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Abstracts

A variational nonlinear Hausdorff-Young inequality in the discrete
setting

Michel Alexis

Following [1], we show a variational Hausdorff-Young inequality for the SU(1, 1)-
valued nonlinear Fourier transform (NLFT).

Recall that given a sequence F in the complex unit disk D, we (informally)
define the NLFT (a, b) of F by

(1)

(
a(z) b(z)

b(z) a(z)

)
:=
∏
k

1√
1− |Fk|2

(
1 Fkz

k

Fkz
−k 1

)
.

This is a map sending points z in the unit circle T to elements of the matrix group

SU(1, 1) :=

{(
α β

β α

)
: |α|2 − |β|2 = 1

}
,

whose elements have operator norm given by∥∥∥∥(α β

β α

)∥∥∥∥
op

= |α|+ |β| .

For each z ∈ T, we visualize truncations of the above NLFT product as a curve
γ in SU(1, 1) beginning at the identity matrix and terminating at the NLFT of
F . Namely, for each integer time N , define

γ(N ; z) :=
∏
k≤N

1√
1− |Fk|2

(
1 Fkz

k

Fkz
−k 1

)
,

and

γ(−∞; z) :=

(
1 0
0 1

)
, γ(+∞; z) :=

(
a(z) b(z)
b∗(z) a∗(z)

)
.

Given 1 ≤ r <∞, define the r-variation of such a curve γ in SU(1, 1) as

Vr(γ)(z) := sup
K

sup
N1<...<NK

K−1∑
j=1

d(γ(Nj), γ(Nj+1))
r

 1
r

,

where the metric d given by

d(X,Y ) := log
(
1 + ∥X−1Y − 1∥op

)
.

We present the main theorem of [1], a variational Hausdorff-Young inequality for
the nonlinear Fourier transform.

Theorem 1 ( [1] ). Let 1 ≤ p < r < 2. There exists a constant Cp,r < ∞ such
that

(2) ∥Vr(γ)∥Lp′ (S) + ∥Vr(γ)∥
1
r

L
p′
r (S)

≤ Cp,r

∥∥∥∥log(1 + |Fn|
1− |Fn|

)∥∥∥∥
ℓp(Z)

,
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where S is the set of points z ∈ T with small variation, i.e., Vr(γ(z)) ≤ 1.

Compare this theorem to its linear analogue

(3) ∥Vr(σ)∥Lp′ (T) ≤ Cp,r ∥F∥ℓp(Z) ,

where the curve

σ(N ; z) :=

 0
∑
k≤N

Fkz
k∑

k≤N
Fkz

−k 0

 ,

is an embedding of the truncated linear Fourier series in the Lie algebra su(1, 1)
of SU(1, 1), and its r-variation is given by

Vr(σ)(z) := sup
K

sup
N1<...<NK

K−1∑
j=1

∥σ(Nj+1; z)− σ(Nj ; z)∥r
 1

r

.

Recalling the nonlinear Fourier transform can be viewed as an exponentiation of
the linear Fourier series, we point out the following perturbative heuristic: the
nonlinear theorem should morally follow from the linear theorem when the poten-
tial F is “small” in an appropriate sense. And [1] proves (2) for all potentials using
precisely this philosphy: indeed, [1] is able to deduce (2) from (3) by showing the
nonlinear variation is controlled by the linear variation and a “big jumps”-term,
i.e.,

Vr(γ)(z) ≤ Vr(σ)(z)+Cr

(
min{Vr(σ)(z)r,Vr(σ)(z)2}+ ∥F∥r−1

ℓr(Z)

∥∥∥∥log 1 + |Fn|
1− |Fn|

∥∥∥∥
ℓr(Z

)
.

The proof of this estimate is broken into 3 steps below.
Step 1: The proof of [1] begins by making rigorous the perturbative heurtistic

by showing that when the potential F has small linear variation, then the loga-
rithm of the nonlinear series and the linear series are are essentially equal. More
precisely, they show there exist constants Cr ≥ 1 and δ > 0 such that whenever
Vr
(
σ[M,N ](z)

)
≤ δ, then

(4) ∥ log
(
γ[M,N ](z)

)
− σ[M,N ](z)∥op ≤ CrVr

(
σ[M,N ](z)

)2
,

where γ[M,N ] and σ[M,N ] denote the nonlinear and linear curves associated to the
truncated potential (Fn1{M≤n≤N})n. To show (4), the author first proves it when
the linear variation is smaller than some δ depending on the individual potential
F (and depending monotonically on |N − M |). But by then breaking up the
potential into pieces where the variation is less than δF (and dealing with big
jumps separately), [1] bootstraps the initial potential-dependent estimate to show
that the estimate actually holds for some δ independent of the potential F .

Step 2: Using (4), the author then shows that the nonlinear and linear varia-
tions are equal up to first order in the perturbative case, i.e.,

Vr(γ) = Vr(σ) +O(Vr(σ)2)
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when Vr(σ) ≤ δ. They prove this using (4) and Taylor expansions of the logarithms
and exponentials of matrices to get good second order estimates.

Step 3: This last step is done via divide and conquer. Because the case of small
variations is handled by Step 2, the author only considers large variations. In this
case, the author breaks up the curve γ into pieces consisting of big jump singletons,
and pieces with no big jumps but with small variation. The contribution of any
individual big jump singleton is directly estimated by

∥ log 1 + |Fn|
1− |Fn|

∥ℓr ,

and the number of these jumps is estimated by ∥F∥r−1
ℓr using Chebyshev’s inequal-

ity. As for the pieces without big jumps but with small variation, we apply Step
2, while keeping track that the number of these pieces is also controlled by the
linear variation.

References

[1] E Silva, D. Oliveira, A variational nonlinear Hausdorff-Young inequality in the discrete

setting, Preprint (2017) ArXiv:1704.00688 .

Orthogonal polynomials and Geronimus’s theorem

Cade Ballew

This talk is based on [1].
A Schur function f(z) is an analytic function defined in the open unit disk

D = {z ∈ C : |z| < 1} such that |f(z)| ≤ 1 for all z ∈ D. For a given Schur
function, Schur’s algorithm generates a sequence of Schur functions and so-called
Schur parameters. It is defined by the recurrence

f0 = f, fn+1 =
fn(z)− fn(0)

z(1− fn(0)fn(z))
, n ∈ N.

Provided that f is not a finite Blaschke product, this algorithm generates an in-
finite sequence of Schur functions {fn}∞n=0 and Schur parameters {γn}∞n=0 where
γn = fn(0) satisfies |γn| < 1. It turns out that given any sequence {γn}∞n=0 ⊂ C
such that |γn| < 1, there exists a unique Schur function with these Schur parame-
ters.

A Carathéodory function F is an analytic function defined in the open unit disk
D = {z ∈ C : |z| < 1} such that ReF (z) ≥ 0 for all z ∈ D. Given a Schur function
f with Schur parameters {γn}∞n=0, define

(1) F (z) =
1 + zf(z)

1− zf(z)
.

For z ∈ D

ReF (z) =
1− |zf(z)|2

|1− zf(z)|2
> 0,
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and F (z) is analytic, so F defines an associated Carathéodory function. By
the Herglotz representation theorem, for any Carathéodory function F such that
F (0) = 1, there exists some Borel probability measure 1

2πdσ defined on [0, 2π)
such that

(2) F (z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dσ(θ).

For a Carathéodory function F associated to a Schur function f , The support of
dσ is infinite except in the case where f is a finite Blaschke product. Conversely,
given any Borel probability measure 1

2πdσ defined on [0, 2π), there exists some
Carathéodory function F satisfying (2) and therefore an associated Schur function
f satisfying (1).

On the other hand, orthogonal polynomials on the unit circle can be defined for
a Borel probability measure 1

2πdσ on [0, 2π). To ensure that an infinite sequence
of orthogonal polynomials exists, we assume that the support of dσ is an infinite
set. Consider the inner product

⟨f, g⟩σ =

∫ 2π

0

f
(
eiθ
)
g (eiθ)dσ(θ),

defined for functions of the unit circle U = {z ∈ C : |z| = 1}. Given the restriction
that φn(z) = χnz

n+. . . where χn > 0, there exists a unique system of orthonormal
polynomials {φn}∞n=0 on U = {z ∈ C : |z| = 1} such that

⟨φn, φm⟩σ = δn,m,

for all n,m ∈ N, where δn,m is the Kronecker delta. Such polynomials can be
generated through, say, the Gram–Schmidt algorithm applied to the set {⋄n}∞n=0,
starting of course from n = 0. The monic orthogonal polynomials {Φn}∞n=0 are
defined by normalizing the orthonormal polynomials to have leading coefficient 1.
That is,

Φn(z) =
1

χn
φn(z) = zn + . . . , n ∈ N.

The reverse polynomials (and more broadly the * operation) are defined by revers-
ing and conjugating the orthogonal polynomial coefficients. That is,

Φ∗
n(z) = znΦn

(
1

z

)
.

The monic orthogonal polynomials and their reverse satisfy a the following pair of
recurrence formulae:

(3)
Φn+1(z) = zΦn(z)− anΦ

∗
n(z), n ∈ N,

Φ∗
n+1(z) = Φ∗

n(z)− anzΦn(z), n ∈ N,

where an = −Φn+1(0). The parameters {an}∞n=0 are known as Verblunsky coeffi-
cients, and |an| < 1 for all n ∈ N. Note that Φ0 = Φ∗

0 = 1, so the monic orthogonal
polynomials and their reverse are uniquely generated by their Verblunsky coeffi-
cients. It turns out that this construction goes both ways. Favard’s theorem says
that given any sequence {an}∞n=0 ⊂ C such that |an| < 1 for all n ∈ N, there exists
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a Borel probability measure 1
2πdσ on [0, 2π) such that the corresponding system

of orthogonal polynomials {Φn}∞n=0 satifies (3) and an = −Φn+1(0) for all n ∈ N.
The connection between Schur functions and orthogonal polynomials on the

unit circle is the following:

Theorem 1 (Geronimus). It holds that an = γn for all n ∈ N.

We will prove this theorem. In a sense, it says that Schur functions and orthog-
onal polynomials on the unit circle are equivalent. Through the theory presented
above, both Schur functions and orthogonal polynomials on the unit circle are
associated with a set of parameters and a probability measure which can each be
derived from the other. Geronimus’s theorem tells us that when the measures
agree, so do the parameters and vice versa. This allows us to appeal to the theory
of orthogonal polynomials to derive properties of Schur functions, yielding theo-
rems that guarantee decay rates of Schur parameters given smoothness properties
of their associated Schur functions and vice versa. We will discuss (and prove if
time permits) the following theorems via orthogonal polynomial theory.

Theorem 2. Let f be a Schur function with boundary values f(eiθ). It is said to
be regular if its boundary values are continuous and supθ∈R |f(eiθ)| < 1. If f is
regular and

∞∑
n=1

1√
n

sup
0<τ< 1

n

sup
θ∈R

|f(ei(θ+τ))− f(eiθ)| <∞,

then its associated Schur parameters satisfy

∞∑
n=0

|γn| <∞.

Conversely, if {γn}∞n=0 are absolutely summable, then their associated Schur func-
tion is regular.

Theorem 3. Schur coefficients {γn}∞n=0 satisfy

lim sup
n→∞

|γn|1/n < 1,

if and only if their associated Schur function is analytic in a region containing the
closed unit disk D and supz∈D |f(z)| < 1.

References

[1] L. B. Golinskii. Schur Functions, Schur Parameters and Orthogonal Polynomials on the Unit

Circle Zeitschrift für Analysis und ihre Anwendungen, 12(3):457–469, 1993.
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The postulates of quantum computing

Tiklung Chan

In this talk we will discuss the basics of quantum computing based on chapter 1
of Ronald de Wolf’s notes [1]. Classical computing is based on classical physics,
including the important notions of locality and that systems can only exist in
one state at a time, and bits, the basic objects of study, behave accordingly by
taking on one of two states (0 or 1) and only changing when acted upon by a
classical operation. On the other hand, quantum computing is based on quantum
physics, which allows for nonlocal operations and superpositions of states, and
qubits reflect these differences by taking on a superposition of states (0 and 1) and
can be operated on by more complex operations. This leads to a richer theory of
computing - in particular, quantum computing algorithms can work much faster
and accomplish more complicated tasks than classical algorithms, for example
Shor’s algorithm for integer factorization. With this being said, much of the work
on quantum computing is still theoretical as there are still many serious obstacles
to effectively constructing physical quantum computers.

First, we introduce the notation and basic ideas of quantum mechanics as they
relate to quantum computing. We use Dirac’s bra-ket notation where a “bra” ⟨·|
represents a 1 × n row vector and a “ket” |·⟩ represents an n × 1 column vector.
The point is that a “braket” (“bracket”) correctly represents the inner product
of two vectors. We will be intentionally ambiguous about exactly what we put in
place of the ·’s as we will often have to deal with complicated states and may need
to abuse notation to simplify computations.

Typically we will use kets to represent states - for example, if we have N states
we may denote them by |0⟩, |1⟩, ..., and |N − 1⟩ which are orthonormal basis
vectors in some N -dimensional Hilbert space. Clasically, a system would only
exist in one of these states at a given time but as we allow for superpositions in
quantum mechanics, the state of a quantum system would be represented by:

|Φ⟩ =
N−1∑
n=0

αn |n⟩

Per the rules of quantum mechanics, the complex amplitudes αn ∈ C must rep-

resent a probability distribution in the sense that
∑N−1
n=0 |αn|2 = 1. When we

have multiple systems, we represent the state by the tensor product of these vec-
tors. In particular, recall that if {|0⟩ , ..., |N − 1⟩} is an orthonormal basis of the
Hilbert space HA and {|0⟩ , ..., |M − 1⟩} is an orthonormal basis of the Hilbert
space HB then {|0⟩ ⊗ |0⟩ , ..., |N − 1⟩ ⊗ |M − 1⟩} is an orthonormal basis of the
NM -dimensional Hilbert space HA ⊗HB .

In quantum mechanics there are two basic operations that can be applied to a
state. We can either measure the state, which yields a single classical state |n⟩
with probability |αn|2, or we can unitarily evolve the state, which yields a new
quantum state. By the laws of quantum mechanics, only linear operations are
allowed, i.e. matrix multiplication, and the probability must be preserved, i.e.
unitary matrix multiplication.
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For the purposes of computing, we will focus on systems of qubits where the
state of each qubit is represented by a vector in a 2-complex-dimensional Hilbert
space where the basis vectors are represented by |0⟩ and |1⟩. For shorthand, we
will represent the tensor product of n of these basis vectors by:

|b1⟩ ⊗ |b2⟩ ...⊗ |bn⟩ = |b1⟩ |b2⟩ ... |bn⟩ = |b1b2...bn⟩

depending on the context, where bi ∈ {0, 1}. It can also be useful to instead repre-
sent each of these basis vectors by an integer in {0, ..., 2n−1}. A key phenomenon
in quantum computing is quantum entanglement, where the probabilities of each
qubit being in state 0 or 1 are entangled with each other in the sense that as soon
as one qubit is measured and it collapses into an observable classical state, the
state of another qubit is immediately known as well. An example of this is an
Einstein-Podolsky-Rosen (EPR) pair:

|Φ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩

Here, if the first qubit is measured and found to be in the 0-state then the second
qubit is immediately known to be in the 0-state as well (and similarly for the
1-state). These pairs are named after Einstein, Podolsky, and Rosen who studied
their properties extensively. Formally, the state of a 2-qubit system is “entangled”
if it cannot be writen as a tensor product |ΦA⟩ ⊗ |ΦB⟩.

We can then define and use gates, which are named in analogy with the same
notion in classical computing. We will focus on gates used for systems of a small
number of qubits (say 2 or 3 qubits). Each gate is a unitary matrix which acts
upon quantum systems in particular ways. For example, the NOT gate which
negates the state of a 1-qubit system is represented by the matrix:

X =

(
0 1
1 0

)
There are many interesting gates which we will discuss in more detail.

In particular, we will use these gates to demonstrate the process of quantum
teleportation, which allows users to send qubits across space without measuring
the state (which would destroy the superposition that it is in). Note that in this
process, classical information still has to be sent so it is not the instantaneous
teleportation depicted in science-fiction. This process combines lots of the ideas
introduced previously and represents one of the many fascinating new possibilities
of quantum computing as compared to classical computing.

References

[1] R. de Wolf, Quantum Computing: Lecture Notes, https://arxiv.org/abs/1907.09415
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The fast and the faster quantum Fourier transform

Jaume de Dios Pont

1. The Classical Discrete Fourier Transform

The discrete Fourier transform, or the Fourier transform in Z/NZ is the natu-
ral discretization of the Fourier transform on R. It is a fundamental tool used in
various fields of classical computing, such as signal processing, data compression,
and complexity theory. It is an operator acting on functions from Z/NZ → C,
or equivalently, a matrix FN acting on N−dimensional vectors. We will take this
later perpsective.

Let ωN = e2πi/N be the N -th root of unity, which satisfies ωNN = 1. The (j, k)-th
entry of the matrix FN is given by:

(FN )j,k =
1√
N
ωjkN , j, k ∈ {0, . . . , N − 1}.

The matrix FN is unitary, which means its columns are orthogonal and have a
norm of 1:

(1)
1

N

N∑
j=0

(FN )j,k (FN )j,l =
1

N

N∑
j=0

w
(j−l)k
N = δk,l

This property ensures that the inverse of FN is its conjugate transpose, F−1
N = F ∗

N ,
differing only in the sign of the exponent. Given a vector v ∈ RN , its Fourier
transform v̂ is computed as:

v̂j =
1√
N

N−1∑
k=0

ωjkN vk.

4.2 The Fast Fourier Transform

The naive way of computing the Fourier transform of a vector v ∈ RN using
matrix multiplication takes O(N2) operations. However, there is a more efficient
algorithm called the Fast Fourier Transform (FFT), developed by Cooley and
Tukey in 1965 [1], which reduces the time complexity to O(N logN), whenever N
is a power of 2.

The key idea behind the FFT is to divide the computation of the Fourier trans-
form into two smaller Fourier transforms: one for the even-indexed elements and
one for the odd-indexed elements. For N = 2n, we can express the Fourier trans-
form v̂j as:

v̂j =
1√
N

( ∑
even k

ωjkN vk + ωjN
∑
odd k

ω
j(k−1)
N vk

)
.
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This recursion continues by dividing the problem into smaller Fourier transforms
of size N/2, allowing the computation to be done in O(N logN) steps. The last
insight is that these sums are periodic

1√
N

∑
even k

ωjkN vk =
1√
N

∑
even k

ω
(j+N/2)k
N vk

and just have to be completed half of the time. In fact, there are aN/2-dimensional
Fourier transform. Define the following operations for v a N = 2n-dimensional
vector:

(2)


ODDn(v) = [v1, v3, . . . , v2n−1]

EVENn(v) = [v0, v2, . . . , v2n−2]

COPYn(v) = [v0, v1 . . . , v2n−1, v0, v1 . . . , v2n−1]

Then we can rewrite the formula above as

FFTn(v) = COPYn−1(FFTn−1(EVEN)(v))

+ (wjN )2
n−1
j=0 ⊙ COPYn−1(FFTn(ODD)(v))

This allows one to define the FFT recursively.
Complexity: The cost of this recursive computation FFTn is ≈ 2n ∗ n =

N log2N : The recursion goes on for n steps. At step k we have split v into 2k

pieces using EVEN and ODD k times, and each piece has length 2n−k. For each
piece we will have to do operations (addition/multiplication) that take 2n−k time,
for a total of 2k · 2n−k = 2n operations per recursion step. For n steps, we do n2n

operations.

2. The Quantum Discrete Fourier Transform

Let Hn be the 2n-dimensional Hilbert space, or the Hilbert space on n qubits.
When n = 1, it contains the qbits: |0⟩, |1⟩. For n > 1, and 0 ≤ k < 2n with
binary expansion ([k]n−1, . . . , [k]1) (so that k =

∑n
j=1[k]j2

jj), we denote by |k⟩ =
|[k]1⟩⊗· · ·⊗|[k]1⟩. The discrete Fourier transform for vectors of length 22

n

, vk 7→ v̂k
is unitary, and thus the transformation

(3)
∑
k∈[2n]

vk|k⟩ 7→
∑
k∈[2n]

v̂k|k⟩

is a unitary operation in Q−bits. This operation is called the QFT . Unlike its
quantum counterpart, it can be executed in n = logN steps. Using a recursive
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decomposition as before, we see that

FN |k⟩ = 1√
N

N−1∑
j=0

e2πijk/N |j⟩

=
1√
2n

∑
j∈{0,1}n

e2πi(
∑n

ℓ=1 jℓ2
−ℓ)k|j1 . . . jn⟩

=

n⊗
ℓ=1

1√
2

(
|0⟩+ e2πik/2

ℓ

|1⟩
)
.

As an explicit example,

F8|k⟩ = (|0⟩+ e2πi0.k0 |1⟩)⊗ (|0⟩+ e2πi0.k1k0 |1⟩)⊗ (|0⟩+ e2πi0.k2k1k0 |1⟩).

The first term of this product (l = 1) only depends on whether k is even or odd,
i.e. it only depends on the least significant bit of k. The second term depends on
the two least significant bits, and so on. From here, the state F8|k⟩ can be build
in stages as

|k0⟩ ⊗ |k1⟩ ⊗ |k2⟩
|k0⟩ ⊗ |k1⟩ ⊗ (|0⟩+ e2πi0.k2 |1⟩)
|k0⟩ ⊗ |k1⟩ ⊗ (|0⟩+ e2πi0.k2k1k0 |1⟩)
|k0⟩ ⊗ (|0⟩+ e2πi0.k1 |1⟩) ⊗ (|0⟩+ e2πi0.k2k1k0 |1⟩)
|k0⟩ ⊗ (|0⟩+ e2πi0.k1k0 |1⟩) ⊗ (|0⟩+ e2πi0.k2k1k0 |1⟩)

(|0⟩+ e2πi0.k0 |1⟩) ⊗ (|0⟩+ e2πi0.k1k0 |1⟩) ⊗ (|0⟩+ e2πi0.k2k1k0 |1⟩)

which becomes a quantum circuit of the form

|k2⟩ H R2 R3

|k1⟩ H R2

|k0⟩ H

In general, this procedure requires n = logN Hadamard gates, and n2−n
2 con-

trolled rotation gates. An approximated version (which drops the small rotations)
can be built with n gates and approximation error n−1
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Quantum Signal Processing

João F. Doriguello

Quantum signal processing (QSP) [10, 7] is an algorithmic primitive that al-
lows to efficiently transform the eigenvalues of a Hermitian matrix using some
given polynomial P ∈ C[x]. More specifically, QSP is a framework that allows
the construction of an operator SP =

∑
θ P (e

iθ)|θ⟩⟨θ| from a simpler unitary
U = eiθ|θ⟩⟨θ|. The transformation requires one or two ancillary qubits and ap-
plies a sequence of control-U and control-U† interspersed by single-qubit gates on
the control a number of times approximately equal to the degree of P . QSP thus
provides an efficiently implementable recipe to transform eiθ 7→ P (eiθ) in super-
position, which can also be used for a general function f with an approximating
polynomial with small degree. QSP produces gate-efficient quantum algorithms
for several important problems [4], e.g., Hamiltonian simulation [3, 1, 2, 5] and
linear system of equations [6, 8, 4].

There are a few different but equivalent approaches to QSP. In the following,
let X, Y, Z be the usual Pauli matrices. Following [9], let x ∈ [−1, 1] and consider
the rotation matrix through an angle arccosx,

O(x) = U(x)Z =

(
x −

√
1− x2√

1− x2 x

)
, where U(x) =

(
x

√
1− x2√

1− x2 −x

)
is the one-qubit Hermitian block encoding of x. The main idea of QSP is to find
angles Φ = (ϕ0, ϕ1, . . . , ϕd) ∈ Rd+1 such that the representation

SΦ(x) = eiϕ0ZO(x)eiϕ1ZO(x) · · · eiϕd−1ZO(x)eiϕdZ = eiϕ0Z
d∏
k=1

O(x)eiϕkZ(1)

reconstruct a polynomial P ∈ C[x] of interest in one of its entries. That such a
procedure is possible is proven in Theorem 1 below. We briefly mention that it
is possible to consider different representations, e.g., Gilyén et al. [4, Theorem 4]
consider the representation

SΦ̃(x) = eiϕ̃0ZW(x)eiϕ̃1ZW(x) · · · eiϕ̃d−1ZW(x)eiϕ̃dZ = eiϕ̃0Z
d∏
k=1

W(x)eiϕ̃kZ,(2)

where

W(x) = eiX arccos x =

(
x i

√
1− x2

i
√
1− x2 x

)
.

Eq. (1) is usually called O-representation, while Eq. (2) is called W-representation.
Since W(x) = e−iπ4 ZO(x)ei

π
4 Z, it is not hard to see that both representations can

be used interchangeably:

SΦ̃(x) = eiϕ̃0Z
d∏
k=1

W(x)eiϕ̃kZ = e−iπ4 Zeiϕ̃0Z

(
d∏
k=1

W(x)eiϕ̃kZ

)
ei

π
4 Z = SΦ(x),

where ϕ0 = ϕ̃0 − π
4 , ϕd = ϕ̃d +

π
4 , and ϕk = ϕ̃k for k = 1, . . . , d− 1.
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Theorem 1 (Quantum signal processing). There is a set of phases Φ := (ϕ0, . . . , ϕd) ∈
Rd+1 such that

SΦ(x) = eiϕ0Z
d∏
k=1

O(x)eiϕkZ =

(
P (x) −Q(x)

√
1− x2

Q∗(x)
√
1− x2 P ∗(x)

)
(3)

if and only if P,Q ∈ C[x] satisfy

(1) deg(P ) ≤ d and deg(Q) ≤ d− 1 (where deg(Q) = −1 means Q = 0);
(2) P has parity d (mod 2) and Q has parity d− 1 (mod 2);
(3) |P (x)|2 + (1− x2)|Q(x)|2 = 1 for all x ∈ [−1, 1].

Proof. We start with the “ =⇒ ” direction. From the unitarity of SΦ(x),

SΦ(x)SΦ(x)
† = I =⇒ |P (x)|2 + (1− x2)|Q(x)|2 = 1,

so Condition 3 is satisfied. When d = 0, SΦ(x) = eiϕ0Z, which yields P (x) =
eiϕ0 and Q = 0, thus satisfying Conditions 1 and 2. For d > 0, suppose by
induction that S(ϕ0,...,ϕd−1)(x) takes the form in Eq. (3) with degree d− 1 and its
corresponding P,Q ∈ C[x] satisfy Conditions 1 and 2. Hence, for all ϕ ∈ R,

S(ϕ0,...,ϕd−1,ϕ)(x) = S(ϕ0,...,ϕd−1)(x)O(x)e
iϕZ

=

(
P (x) −Q(x)

√
1− x2

Q∗(x)
√
1− x2 P ∗(x)

)(
x −

√
1− x2√

1− x2 x

)(
eiϕ 0
0 e−iϕ

)
=

(
xP (x)− (1− x2)Q(x) −

√
1− x2(P (x) + xQ(x))√

1− x2(P ∗(x) + xQ∗(x)) xP ∗(x)− (1− x2)Q∗(x)

)(
eiϕ 0
0 e−iϕ

)
=

(
eiϕ
(
xP (x)− (1− x2)Q(x)

)
e−iϕ

(
−

√
1− x2(P (x) + xQ(x))

)
eiϕ
(√

1− x2(P ∗(x) + xQ∗(x))
)

e−iϕ
(
xP ∗(x)− (1− x2)Q∗(x)

) )
=

(
P̃ (x) −Q̃(x)

√
1− x2

Q̃∗(x)
√
1− x2 P̃ ∗(x)

)
.

Thus P̃ (x) = eiϕ(xP (x)−(1−x2)Q(x)) and Q̃(x) = e−iϕ(P (x)+xQ(x)) have degree
at most d and d − 1, respectively, since deg(P ) ≤ d − 1 and deg(Q) ≤ d − 2 by

induction hypothesis. Similarly, P̃ and Q̃ have parity d (mod 2) and d−1 (mod 2),
respectively, since P has parity d − 1 (mod 2) and Q has parity d − 2 (mod 2).
This completes the “ =⇒ ” direction.

We now consider the “ ⇐= ” direction. When d = 0, then Q = 0 and P is such
that |P (x)| = 1 and deg(P ) = 0. The only possibility is thus P (x) = eiϕ0 and
Q = 0, which satisfies Eq. (3). Another possibility is d > 0 even while deg(P ) = 0,
meaning that P (x) = eiϕ0 and Q = 0. In this case, note that

O(x)−1 = O(x)† =

(
x

√
1− x2

−
√
1− x2 x

)
= e−iπ2 ZO(x)ei

π
2 Z,
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and so, if we take ϕk = (−1)k π2 for k = 1, . . . , d, then

eiϕ0Z
d∏
k=1

O(x)eiϕkZ = eiϕ0Z(O(x)e−iπ2 ZO(x)ei
π
2 Z)

d
2 = eiϕ0Z(O(x)O(x)†)

d
2 = eiϕ0Z.

This means that Eq. (3) holds.
For the remaining cases, the proof is by induction on d. Assume Eq. (3) holds for

d− 1. Consider P,Q satisfying Conditions 1 to 3 with deg(P ) = d > 0. Therefore,
deg(|P (x)|2) = 2d > 0, and by Condition 3, we must have that deg(|Q(x)|2) =
2d− 2 =⇒ deg(Q) = d− 1. Expand P,Q as

P (x) =

d∑
k=0

αkx
k and Q(x) =

d−1∑
k=0

βkx
k.

The leading term of |P (x)|2+(1−x2)|Q(x)|2 is (|αd|2−|βd−1|2)x2d, which is zero
according to Condition 3. Thus |αd| = |βd−1|. On the other hand, for any ϕ ∈ R,(

P (x) −Q(x)
√
1− x2

Q∗(x)
√
1− x2 P ∗(x)

)
e−iϕZO(x)†(4)

=

(
P (x) −Q(x)

√
1− x2

Q∗(x)
√
1− x2 P ∗(x)

)(
e−iϕ 0
0 eiϕ

)(
x

√
1− x2

−
√
1− x2 x

)
=

(
e−iϕxP (x) + (1− x2)eiϕQ(x)

√
1− x2(e−iϕP (x)− eiϕxQ(x))√

1− x2(e−iϕxQ∗(x)− eiϕP ∗(x)) eiϕxP ∗(x) + e−iϕ(1− x2)Q∗(x)

)
=

(
P̃ (x) −Q̃(x)

√
1− x2

Q̃∗(x)
√
1− x2 P̃ ∗(x)

)
.

By a proper choice of ϕ ∈ R, it is possible to obtain deg(P̃ ) = d − 1. Indeed, let

e2iϕ = αd/βd−1 (since |αd|/|βd−1| = 1). Then the coefficient of the xd+1 term in P̃
is e−iϕαd − eiϕβd−1 = e−iϕ(αd − e2iϕβd−1) = 0. By the same token, the coefficient

of the xd term in Q̃ is −eiϕαd + eiϕβd−1 = 0. The coefficient of the xd term in

P̃ and the coefficient of the xd−1 term in Q̃ must also be zero, this time by the
parity condition from Condition 2. In summary,

(1) deg(P̃ ) ≤ d− 1 and deg(Q̃) = d− 2;

(2) P̃ has parity d− 1 (mod 2) and Q̃ has parity d− 2 (mod 2);

(3) |P̃ (x)|2+(1−x2)|Q̃(x)|2 = |P (x)|2+(1−x2)|Q(x)|2 = 1 for all x ∈ [−1, 1],
by unitarity.

By the induction hypothesis, Eq. (3) holds for phases (ϕ0, . . . , ϕd−1) ∈ Rd and

polynomials P̃ , Q̃. Therefore, from Eq. (4) it means that Eq. (3) holds for phases
(ϕ0, . . . , ϕd−1, ϕ) ∈ Rd+1 and polynomials P,Q. This completes the proof. □
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The modified Korteweg-de Vries equation and inverse scattering

Nicolas Faroß

In this talk, we consider the modified Korteweg-de Vries equation, a nonlinear
partial differential equation used to model water waves. Based on the previous
talks on the nonlinear Fourier transform, we sketch how this equation can be solved
using the inverse scattering method. Additionally, we compare this approach to
the method of solving the Airy equation using the linear Fourier transform. Our
main references are the lecture notes [1, Lecture 6.1] and the article [2].

1. The modified Korteweg-de Vries equation

The modified Korteweg-de Vries (mKdV) equation for a function F (t, x) is given
by

Ft + Fxxx + 6F 2Fx = 0,

where the lower indices denote partial derivatives with respect to the position x and
the time t. Physically, F (t, x) describes the height of water relative to its surface
and the equation models the propagation of waves in shallow water. A main feature
of the equation is the existence of soliton solutions given by wave packets that
travel indefinitely while preserving their shape. Further, the unmodified equation
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has been the main motivation for the development of the inverse scattering method
in [3]. For further information, we refer to [4, Section 9.1.1] or [5, Chapter 7].

2. The linear Fourier method

Following the lecture [1, Lecture 6.1], we first consider the Airy equation and show
how it can be solved using the linear Fourier transform. Consider the Cauchy-
problem for the Airy equation given by

Ft = Fxxx, F (0, x) = F0(x)

that is obtained by dropping the nonlinear term 6F 2Fx of the mKdV equation.
By applying the linear Fourier transform on R defined by

F̂ (t, k) =

∫
R
F (t, x)e2ikx dx,

we can transform the Airy equation into the new equation

F̂t = (−2ik)3F̂ = 8ik3F̂ .

For fixed k, this yields an ordinary differential equation that can be solved explic-
itly by

F̂ (t, k) = e8ik
3tF̂0(k).

Thus, we have constructed a solution to the Airy equation modulo to applying a

Fourier transform to the initial data F0 and an inverse Fourier transform to F̂ .

3. The nonlinear Fourier transform

Next, we want to apply the nonlinear Fourier transform to solve the Cauchy-
problem for the mKdV equation of the form

Ft = Fxxx + 6F 2Fx, F (0, x) = F0(x).

However, we first have to pass from the nonlinear Fourier transform on Z in the
previous talks to the nonlinear Fourier transform on R. This can be done via
a limit procedure that replaces (an(t, z), an(t, z)) index by a discrete n ∈ Z with
(a(t, k, x), b(t, k, x)) index by a continuous parameter k ∈ R. Further, the recursion
relation for (an(t, z), bn(t, z)) becomes the differential equation

∂

∂x
(a(t, k, x), b(t, k, x)) = (a(t, k, x), b(t, k, x))(0, F (t, x)e2ikx).

In the following, we assume for simplicity that F has only compact support. Then
the nonlinear Fourier transform of F is given by︷︸︸︷

F (t, k) = (a(t, k,∞), b(t, k,∞))

with initial values (a(t, k,−∞), b(t, k,−∞)) = (1, 0) and x = ±∞ denoting a
sufficiently large/small point outside the support of F . In the next section, we
outline how applying the Fourier transform to the mKdV equation yields︷︸︸︷

F (t, k) = (a(t, k,∞), e8ik
3tb(t, k,∞)),
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where (a(0, k,∞), b(0, k,∞)) is obtained from the Fourier transform of initial data︷︸︸︷
F0 (k) = (a(0, k,∞), b(0, k,∞)).

Thus, we obtain a solution of the mKdV equation modulo the nonlinear Fourier
transform similarly to the linear case of the Airy equation.

4. Lax pair formulation

To prove the previous statement, one can use the function F (t, x) to construct a
Lax pair [6] consisting of operators L(t) and P (t) satisfying the equation

d

dt
L(t) = [L(t), P (t)],

where [L,P ] denotes the commutator of L and P . This equation implies that
eigenvectors ϕ(t) of L(t) are preserved under the flow of P defined by

d

dt
ϕ(t) = P (t)ϕ(t).

By the construction of L (see [1]), its eigenvectors ϕ(t) are determined by the
functions a(t, k, x) and b(t, k, x) appearing in the definition of the nonlinear Fourier
transform of F (t, k). Thus, given the nonlinear Fourier transform︷︸︸︷

F0 (k) = (a(0, k,∞), b(0, k,∞))

of the initial data F0, we can construct initial eigenvectors ϕ(0) and use the flow
equation for P to obtain an eigenvector ϕ(t) at any time t > 0. From this eigen-
vector ϕ(t), we reconstruct again the nonlinear Fourier transform given by︷︸︸︷

F (t, k) = (a(t, k,∞), b(t, k,∞)).

Since the point x = ∞ lies outside the support of F , the operator P does not
depend on F in this region. Thus, the flow equation can be solved explicitly,
which yields the statement︷︸︸︷

F (t, k) = (a(0, k,∞), e8ik
3tb(0, k,∞)).

5. Soliton solutions

Note that in the previous section, we did not consider the initial mKdV equation
but the sign adjusted version used in [1, Lecture 6.1]. A solution of the initial
mKdV equation

Ft + Fxxx + 6F 2Fx = 0

is constructed in [2] using a similar method. However, in this case, the eigenvectors
of the operator L(t) no longer correspond to the nonlinear Fourier transform with
respect to SU(1, 1) but they are given to the nonlinear Fourier transform with
respect to SU(2). Moreover, this version of the mKdV equation now admits
soliton solutions. See again [2] or [4, Chapter 9.2.1] for explicit descriptions of
these solutions.
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Jacobi matrices and Schrödinger operators

Rubén de la Fuente Fernández

We study an application of Schur’s algorithm to prove spectral properties of
Jacobi matrices that can be used to show results about the spectrum of Schrödinger
operators on the discrete half-line.

In particular, we will focus our attention on the paper [DK04], which is devoted
to studying spectral properties of half-line discrete Schrödinger operators with a
Dirichlet boundary condition at the origin. Those operators take the form

(1) [hV ψ](n) = ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n)

with ψ ∈ l2(Z+), Z+ = {1, 2, ...} and ψ(0)=0.

In the free case (V = 0), the spectrum of h0 is [−2, 2] and it is purely absolutely
continuous. In [DK04] the authors give two results regarding the spectrum of hV .

Theorem 1. [DK04, Theorem 1] A discrete half-line Schrödinger operator hV
with spectrum contained in [−2, 2] has purely absolutely continuous spectrum.

Theorem 2. [DK04, Theorem 3] If a discrete half-line Schrödinger operator hV
has only finitely many eigenvalues outside [−2, 2], then it has purely absolutely
continuous spectrum on [−2, 2].

In order to prove these theorems, the authors mainly use one result about the
spectrum on Jacobi operators [DK04, Theorem 5], which will be the object of our
attention. The proof of it strongly relies on the Schur algorithm and orthogonal
polynomials in order to give a relation between the coefficients defining a Jacobi
operator and Schur’s coefficients. They also prove natural analogues to Theorems
1 and 2 for the continuous setting, but we will focus on the discrete case.

Jacobi matrices and Schur coefficients

A Jacobi Matrix acting on the disrete half-line is an operator of the form

[Jψ](n) = anψ(n+ 1) + an−1ψ(n− 1) + bnψ(n)

with ψ ∈ l2(Z+), an positive and bn real. Both coefficient sequences are assumed
to be bounded, therefore J defines a bounded self-adjoint operator. Note that in
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the case an = 1, bn = V (n) this is just a Schrödinger operator of the form (1).
The result we will focus on, which corresponds to Section 2 in [DK04], is the
following

Theorem 3. [DK04, Theorem 5] A Jacobi matrix with coefficients an and bn
has spectrum σ(J) ⊆ [−2, 2] if and only if there is a sequence γn ∈ (−1, 1), n ∈
{0, 1, ...}, that obeys

bn+1 = (1− γ2n−1)γ2n − (1 + γ2n−1)γ2n−2(2)

a2n+1 = (1− γ2n−1)(1− γ2n)
2(1 + γ2n+1)(3)

(Here γ−1 = −1, and the value of γ−2 is irrelevant since it is multiplied by zero.)

This sequence γn comprises exactly the coefficients of a Schur algorithm starting
from a function which is constructed using a spectral measure of J . The authors
of [DK04] devote Sections 3, 4, and 5 to prove bounds for the Schur coefficients
associated with Jacobi matrices and use them together with Theorem 3 to show
properties of the spectrum of Schrödinger operators and, in particular, Theorems
1 and 2.

Sketch of the proof of Theorem 3

The strategy of the proof starts with constructing the spectral measure of J
associated with the vector δ1,n ∈ l2(Z+), the Kronecker delta function at 1, which
we will denote dµ. This vector is cyclic with respect to J , so the support of dµ
coincides with the spectrum of J . From cyclicity we can also derive that J is
unitarily equivalent to g(x) 7→ xg(x) in L2(dµ). As l2(Z+) is infinite dimensional,
L2(dµ) is as well, therefore dµ must be supported in an infinite set.
We can also write the m-function of J using dµ

m0(z) =

∫
1

t− z
dµ(t).

First we assume σ(J) ⊆ [−2, 2]. Then, we can use dµ to define a measure on S1∫
g(t)dµ(t) =

∫
g(ζ + ζ−1)dρ(ζ).

Next step is to construct a Schur function f0 using the Carathéodory function F0

associated with ρ

F0(ξ) =

∫
ζ + ξ

ζ − ξ
dρ(ζ) = (ξ − ξ−1)m0(ξ + ξ−1) ; f0 =

1

ξ

F0(ξ)− 1

F0(ξ) + 1
.

The fact that dµ is supported on an infinite set implies that f0 cannot be written
as a Blaschke product, allowing us to set up Schur’s algorithm to construct the
Schur coefficients for f0

fn+1(ξ) =
1

ξ

fn(ξ)− γn
1− γ̄nfn(ξ)

,

with γn = fn(0) and |γn| < 1. The key observation is that the step in which we
defined f0 using dρ can be inverted, so we can define a different measure on S1
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for each fn we produce. These measures are then used to construct Carathéodory
functions Fn, m-functions mn and Jacobi matrices Jn. Relations (2) and (3) are
obtained by computing the coefficients of J2n.

For the converse direction of Theorem 3 we assume that the coefficients of J fulfill
(2) and (3). Then we can construct a Schur function with these coefficients γn.
With this function we construct a probability measure dρ̃ on S1, which induces
a probability measure on [−2, 2], and therefore a Jacobi matrix J̃ with spectrum

contained in [−2, 2]. But as the coefficients of J̃ are also determined by (2) and

(3), then J̃ = J and σ(J) = σ(J̃) ⊆ [−2, 2].

Theorem 3 is not new to [DK04], it already appeared in [G54]. However, the
authors of [DK04] present a short, clear and self-contained proof that explicitly
relies on the Schur algorithm and the shape of Jacobi operators.
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The Nonlinear Fourier Transform on ℓ2(Z)

Max Giessler

In this talk we extend the definition of the NLFT to square summable sequences
on the full line and discuss some of its properties, following lecture 3 of Tao’s and
Thiele’s lecture notes [2]. In particular, we are concerned with its invertibility
properties.

For a sequence F ∈ ℓ2(Z≤−1, D) supported on the negative integers and taking
values in the complex disc D we define its NLFT to be︷︸︸︷

F (z) := (a∗(z−1), b(z−1)), z ∈ T,

where (a, b) is the NLFT of the reflected sequence in ℓ2(Z≥1, D) as defined in the
previous talk. Recall that the NLFT is a homeomorphism from ℓ2(Z≥0, D) to H,
defined to be the space of all SU(1, 1)-valued functions (a, b) such that a satisfies
an outerness condition and a normalization condition at ∞, and b/a∗ satisfies a
holomorphicity condition (see [1] for details on the underlying complex analysis).
Analogously, we define H∗

0, replacing the holomorphicity condition with one for
b/a and additionally requiring that b(∞) = 0. By the shifting property (Lemma
1 (5) in [2]) one can deduce that the NLFT extends to a homeomorphism from
ℓ2(Z≤−1, D) to H∗

0. Intuitively, the NLFT is a bijection on both half-lines.
Now we define the NLFT of a sequence F ∈ ℓ2(Z, D) to be the SU(1, 1)-valued

measurable function on T given by the matrix product︷︸︸︷
F (z) :=

︷ ︸︸ ︷
F≤−1(z)

︷︸︸︷
F≥0(z),(1)
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where F≤−1 ∈ ℓ2(Z≤−1, D) and F≥0 ∈ ℓ2(Z≥0, D) denote the truncations of the
sequence F to its negative and non-negative entries, respectively. In line with the
earlier notation, we also write (a, b) = (a−b−)(a+b+) for (1). Observe that we
modified the definition of the NLFT on the half-line in accordance with Lemma 1
in [2] to gain a definition for the full-line. Therefore by construction, the NLFT
on the full-line still satisfies Lemma 1 and is consistent with the definition of the
NLFT on ℓp(Z) for 1 ≤ p < 2. In a way, until now we have only harvested the
fruit from our work on the half-line.

Further investigation shows that the NLFT maps ℓ2(Z, D) into the space L and
is continuous. The Plancherel identity∫

T

log|a(z)| = −1

2

∑
z∈Z

log(1− |Fn|2)

carries over. However, bijectivity is lost: Indeed, the NLFT in not injective on
ℓ2(Z, D).

This insight leads the way to the inverse problem with which we shall concern
ourselves for the remainder of the talk. We want to find a (not necessarily unique)
preimage for a given function (a, b) ∈ L, i.e. a sequence F ∈ ℓ2(Z, D) with NLFT
(a, b). By the half-line theory, this boils down to finding a matrix factorization

(a, b) = (a−b−)(a+b+) with (a−b−) ∈ H∗
0 and (a+b+) ∈ H.(2)

That is because any such factorization is the NLFT of uniquely determined trun-
cations F≤−1 and F≥0 of a sequence F ∈ ℓ2(Z, D) as the NLFT is a bijection on
the half-lines. Keeping in mind this equivalence between finding a preimage for
the NLFT and finding a factorization as in (2) is worth it.

The factorization problem (2) of a matrix-valued function onT is called Riemann-
Hilbert problem. It is possible to rewrite it as a product of functions on D and
D∗, respectively, obtaining the classical formulation of the R-H problem modulo
outerness, normalization, and holomorphicity constraints (this is done in [2]).

We can recover injectivity of the NLFT or, equivalently, prove the uniqueness
of any R-H factorization if we additionally assume a to be bounded:

Theorem 1 ([2], Lemma 18). For a function (a, b) ∈ L where a is bounded there

is a unique F ∈ ℓ2(Z, D) such that
︷︸︸︷
F = (a, b).

The proof relies upon the Banach fixed-point theorem. W.l.o.g. we can assume
that a+, b

∗
+, a−, b− lie in the Hardy space of square-integrable functions H2(D∗).

We can show that the factor (a+, b+) in any R-H factorization must be a fixed
point of the map

(A,B) 7→ (c+ PD∗(Bb∗/a∗), PD(Ab/a))(3)

mapping L2(T)×L2(T) into itself. Here, PD and PD∗ are the orthogonal projec-
tions from the Hilbert space L2(T) to H2(D) and H2

0 (D
∗), respectively, and c is

a uniquely determined constant. Crucially, to prove that (3) is a contraction we
need that a is bounded. Then we obtain as the unique fixed point (a+, b+) and
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the corresponding factor (a−, b−) by rewriting (2):

(a−, b−) = (a, b)(a∗+,−b+).(4)

This shows the uniqueness of the R-H factorization and therefore of the inverse.
The general case of unbounded a is more complicated. In particular, we cannot

prove the uniqueness of the preimage anymore. Let us fix a function (a, b) ∈ L.
Instead of using the Banach fixed-point theorem, we apply the Riesz representation
theorem to the functional λ : (A,B) 7→ Re[A(∞)] on the Hilbert spaces Hmin and
Hmax. These are nested in between

H2(D∗)×H2(D) ⊆ Hmin ⊊ Hmax ⊆ aH2(D∗)× a∗H2(D)

and equipped with the scalar product ⟨(A′, B′), (A,B)⟩ :=
∫
T
Re[A′(A∗ − b

aB
∗) +

(B′)∗(B− b
aA)]. Let (Amin, Bmin) be the unique element in Hmin which represents

λ in this scalar product and likewise (Amax, Bmax). In this setting, we can prove
the following general result for the inverse problem:

Theorem 2 ([2], Theorem 7). Let (a, b) ∈ L. Then there exists a R-H factoriza-
tion (2). Two possible choices are given by

(a+, b+) = (Amin, Bmin)Amin(∞)−1/2 and

(a+, b+) = (Amax, Bmax)Amax(∞)−1/2

where in each case (a−, b−) is determined as in (4).

While we approached the proof of Theorem 1 from the point of view of the R-H
problem, here we take the perspective of finding a preimage for the NLFT. We
sketch the proof for Hmin. Let Hn for all n ∈ Z be a particular family of Hilbert
spaces such that H0 = Hmin and Hn+1 ⊆ Hn (see [2] for details). For each integer
n let (An, Bn) be the Riesz representer of the functional λ in Hn. Then we can
deduce the relation

(An+1, Bn+1) = (An, Bn)− Fn(B
∗
nz
n, A∗

nz
n)

for uniquely determined complex numbers Fn in the unit disc D. It remains to
verify that the sequence F := (Fn)n∈Z is indeed in ℓ2(Z, D) and that its NLFT is

(a, b). Finally, the NLFT of its truncation
︷︸︸︷
F≥0 = (a+, b+) is of the required form.

Note that we can imitate this proof for Hmax and thus obtain another, different
sequence F̃ with NLFT (a, b).

Taking the point of view of the R-H problem again the underlying reason for
the loss of uniqueness in Theorem 2 turns out the be the following:

Theorem 3 ([2], Theorem 8). Let (a, b) ∈ L. Then there exists a unique factor-
ization

(a, b) = (a−−, b−−)(ao, bo)(a++, b++)

with (a−−, b−−) ∈ H∗
0, (ao, bo) ∈ H∗

0 ∩ H, (a++, b++) ∈ H. Furthermore,
(a−−, b−−) and (a++, b++) only admit the trivial R-H factorizations (a−−, b−−) =
(a−−, b−−)(1, 0) and (a++, b++) = (1, 0)(a++, b++).
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Because the factor (ao, bo) is in both the spaces H∗
0 ∩H we can multiply it with

either factor (a−−, b−−) or (a++, b++) and stay within the spaces H∗
0 or H by the

group structure of SU(1, 1). In this way, we obtain different R-H factorizations
(2) and consequently different preimages for (a, b).
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Stability of Schur’s iterates and fast solution of the discrete integrable
NLS

Kaiyi Huang

1. Introduction

The defocusing Ablowitz–Ladik equation states

(1)

{
∂
∂tq(t, n) = i(1− |q(t, n)|2)(q(t, n− 1) + q(t, n+ 1)),
q(0, n) = q0(n), (t, n) ∈ R× Z.

The paper proposes a fast algorithm to numerically solve (1) with high accuracy,
given l2 initial data q0 : Z −→ D, where D = {z ∈ C : |z| < 1}.

2. Schur’s algorithm

Let F : D −→ D be a holomorphic function. Set F0 = F . Schur’s algorithm
generates a sequence {Fn}n≥0 by

(2) zFn+1 =
Fn − Fn(0)

1− Fn(0)Fn
, n ≥ 0.

It turns out that Fn : D −→ D is holomorphic for all n ≥ 0. The sequence of
numbers {Fn(0)}n≥0 are called the recurrence coefficients of F .

Let T = {z ∈ C : |z| = 1}, and let m denote the Lebesgue measure on T with
m(T) = 1. For any holomorphic function F : D −→ D and r ∈ (0, 1), define

∥F∥L2(rT) =

(∫
T
|F (rξ)|2dm(ξ)

) 1
2

.

We further define η(F ) =
∏∞
k=0(1−|Fn(0)|2). Then, one has the following stability

theorem.

Theorem 1. Let F,G : D −→ D be analytic functions. Suppose η(F ), η(G) ≥ η
for some η > 0. Then for every r ∈ (0, 1) and n ∈ Z+, we have

(3) ∥Fn −Gn∥L2(rT) ≤ C(η, r)r−n∥F −G∥L2(rT),

where C(η, r) = exp{[2 + (1−
√
1− η)−1][4(1− r)−2 + 1] log

(
η−1

)
}.
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3. Nonlinear Fourier transform (NLFT)

Let 1 ≤ p ≤ ∞. Define lp(Z,D) = {{q(n)}n∈Z| : |q| < 1,
∑
n∈Z |q(n)|p < ∞}.

Define a, b : T −→ C by(
a b
b̄ ā

)
=
∏
k∈Z

1√
1− |q(k)|2

(
1 q(k)z−k

q(k)zk 1

)
,

where the product of matrices Tk is defined by∏
k∈Z

Tk = lim
n−→+∞

TnT−n+1 · · ·Tn−1Tn.

For q ∈ l1(Z,D), the convergence is uniform on T. The reflection coefficient of
q is defined as rq = b

a . The scattering map Fsc : q 7→ rq is called the nonlinear
Fourier transform (NLFT).

Define

X = {h ∈ L∞(T) : ∥h∥L∞(T) ≤ 1, log
(
1− |h|2

)
∈ L1(T)},

equipped with the Sylvester–Winebrenner metric[2]1

ρs(h1, h2) =

√√√√−
∫
T
log

(
1−

∣∣∣∣ h1 − h2

1− h1h2

∣∣∣∣2
)
dm.

For δ ∈ [0, 1), denote B[δ] = {h ∈ l∞(Z,D) : ∥h∥L∞(T) ≤ δ}. Then B[δ] ⊂ X.

Define G[δ] = F−1
sc (B[δ]) ∩ l2(Z,D).

The following properties of Fsc are useful to solve the AL equation.

Theorem 2.

(1) Fsc : l1(Z,D) −→ L∞(T) is injective, and extends uniquely to a continuous
map Fsc : l2(Z,D) −→ X.

(2) Fsc : l2(Z,D) −→ X is surjective, but not injective.
(3) For every δ ∈ (0, 1), Fsc : G[δ] −→ B[δ] is a homeomorphism.
(4) If q = q(t, n) solves (1) with the initial data q0 ∈ G[δ] for some δ ∈ (0, 1),

then q(t, ·) = Fsc(eit(z+
1
z )Fsc(q0)).

Nonlinear Fourier transforms and Schur’s algorithm are closely related.

Lemma 3. Let q ∈ l2(Z,D) supported on Z+. Then fq =
b̄
a is an analytic rational

function with |fq| < 1 on D, whose recurrence coefficients coincide with {q(k)}k≥0.

4. The inverse scattering theory (IST)

For q0 ∈ l1(Z,D), one can solve (1) by the following algorithm.

Step 1. Given initial data q0 ∈ l1(Z,D), compute the reflection coefficient rq0 .

Step 2. Find q(t, ·) : Z −→ D such that rq(t,·) = eit(z+
1
z )rq0 on T, where eit(z+ 1

z )

is called the inverse scattering multiplier.

It doesn’t work for q0 ∈ l2(Z,D) because Fsc is not injective by Theorem 2[3, 4].

1Someone claims that there is a mistake in the proof that ρs is a metric.



28 Oberwolfach Report ??/2024

5. Localization and the inverse scattering multiplier

By translation invariance we may assume q0 : Z −→ D is supported on Z∩ [0, l]
for some l ∈ Z+. By symmetry of q0 with respect to t, we may assume t > 0.

Let Pn,t be the partial sum of the Fourier series of eit(z+
1
z ), a smooth function

on T, up to |k| ≤ n. Define

(4) Gn,t = (1− δn,t)z
nPn,t, δn,t =

tnet

n!
, n > ct, c > e.

6. An algorithm for square integrable initial data

Step 1. To approximate q(t, n0) at t > 0, n0 ∈ Z, choose ∆ = [n0 − N,n0 + N ].
Truncate the initial data to obtain q0,N = X∆q0. Shift q0,N by n0 −N so
that the support lies in Z+ ∩ [0, 2N ].

Step 2. Set fq0,N = b̄
a , and Fn,0 = Gn,tfq0,N . Then Fn,0 is analytic in D, and

|Fn,0| < 1. We can find the recurrence coefficients {Fn,k(0)}k≥0 of Fn,0 by
Schur’s algorithm. Define

(5) q̃n(t, j) =

{
Fn,n+j(0), j ≥ −n,
0, j < −n.

Step 3. Consider q0(−·), and repeat steps 1 and 2.

The following theorem shows that q̃n approximates the solution q with an ab-

solute error O(ε) in [n0 − N
2 , n0 +

N
2 ] when N = 5 + 4et+ log2

C(η, 12 )

ε , n = 2N .

Theorem 4. Let t > 0, and q0 : Z −→ D be a sequence compactly supported on
Z+ Assume that

∏
n∈Z+

(1− |q0(n)|2) ≥ η for some η > 0. Then

(6) |q(t, j)− q̃n(t, j)| ≤ 2jC(η,
1

2
)
12e5t√
2πn

(
2et

n
)n,

for all n ∈ Z+, j ∈ Z≥−n, t > 0 such that n > t and δn,t < 1. Here q solves (1)
with initial data q0, and C(η,

1
2 ) is as in Theorem 1 with r = 1

2 .

Proof Sketch of Theorem 4. First, we prove that for each t > 0, {q̃n(t, j)}n∈Z+
is

a Cauchy sequence, thus converging to some q̃(t, j) for each admissible j. This is

done by using Theorem 1, properties of the Fourier series of eit(z+
1
z ) on T, and

the fact that {δn,t}n≥0 is rapidly decreasing.
Then it remains to prove that q̃(t, j) = q(t, j), which can be implied by rq(t,·) =

rq̃(t,·) by Theorem 2. The remaining argument follows from properties of outer
functions and the fact that a of NLFT are outer functions via weak continuity of
the Hilbert transform.

□

Theorem 5. The algorithm requires O(n log2 n) operations, where n = t+ log 1
ε .
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The circuit model of quantum computing

Massimiliano Incudini

In quantum computing, the de facto standard model of computation is the circuit
model, which can be derived by generalizing the classical circuit model.

A Boolean circuit is a directed acyclic graph where each vertex is either an
input, an output, or a computational node representing the logical gates AND,
OR, NOT, or COPY, and it computes a function f : {0, 1}n → {0, 1}m. Using
these gates, we can implement any Boolean function, making this set of gates
universal for Boolean computation. A sequence of such circuits, one for each
input size n, is called a circuit family C = {Cn : {0, 1}n → {0, 1}}, and it is
denoted as uniformly polynomial if there exists a deterministic Turing machine
that outputs the description of Cn using O(log n) space. The condition of being
uniformly polynomial ensures that there is an efficient way to construct each circuit
Cn based on the input size, avoiding the need to manually specify each circuit for
different sizes; the requirement of log n space ensures that the Turing machine
generates circuits running in poly n time.

In the context of computational complexity, a decision problem L is a subset
of {0, 1}∗ = ∪∞

n=0{0, 1}n, where each binary string represents an instance of the
problem. A decision problem L is in the class P if there exists a uniformly poly-
nomial circuit family C = {Cn} such that for every input x ∈ {0, 1}n, the circuit
Cn outputs 1 if x ∈ L and 0 otherwise.

Extending this concept, a randomized circuit family is a circuit family C = {Cn}
where each circuit Cn is provided with O(poly(n)) random bits in addition to
its input. A decision problem L is in the class BPP if there exists a uniformly
polynomial randomized circuit family such that for all x ∈ {0, 1}n, the probability
that Cn(x) = 1 is at least 2

3 if x ∈ L, and at most 1
3 if x /∈ L.

In the quantum setting, a quantum circuit family C = {Cn} consists of circuits
where each gate corresponds to a unitary transformation on a few qubits. Notable
quantum gates include

X = ( 0 1
1 0 ) Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)
S = ( 1 0

0 i ) T =
(
1 0
0 e−iπ/4

)
cnot = ( 1 0

0 0 )⊗ I+ ( 0 0
0 1 )⊗X
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The set {H,S,cnot} is universal for quantum computation. The Solovay-Kitaev
theorem guarantees that anym-qubit unitary transformation can be approximated
up to precision ϵ with poly(m log

(
mϵ−1

)
) gates from any universal set. The oper-

ations are composed in parallel via the tensor product and in sequence via matrix
multiplication. The computation ends with a measurement on the computational
basis, yielding a probabilistic result. A decision problem L is in the class BQP
if there exists a uniformly polynomial family of quantum circuits C = {Qn} such
that for all x ∈ {0, 1}n, the probability that Qn(x) = 1 is at least 2

3 if x ∈ L, and

at most 1
3 if x /∈ L.

We can now present some quantum algorithms outperforming their classical
analog. These algorithms are best analyzed in the query model.

The query model differs from the standard model: the input x ∈ {0, 1}N , with
N = 2n, is provided as a black-box oracle Ox. This oracle is a unitary opera-
tor over n + 1 qubits, whose action is given by Ox |i⟩ |b⟩ = |i⟩ |b⊕ xi⟩. A single
application of the oracle is called a query, and it is represented in the quantum
circuit similarly to other gates. The query complexity model conveniently illus-
trates an exponential separation between classical and quantum computation in
certain tasks. For instance, any (uniformly polynomial) classical circuit would re-
quire exponentially many queries (in the input size n), whereas its quantum analog
would require only a polynomial number of queries. A slightly different form of
the oracle, implementing O±

x |i⟩ = (−1)xi |i⟩, is sometimes used and referred to as
a phase oracle.

Two problems exemplify a significant separation between classical and quan-
tum computational capabilities. The first is the Deutsch-Jozsa problem, which
involves determining whether a function f , defined over n bits (represented as a
lookup table x ∈ {0, 1}N , with N = 2n), is either balanced (where half the outputs
are zero and the other half are one) or constant, under the promise that it is one
of the two [1]. The Deutsch-Jozsa algorithm is a quantum algorithm that begins
with the state |0n⟩, applies the unitary operation H⊗nO±

xH
⊗n, and then performs

a measurement in the computational basis. The state just before measurement is:

H⊗nO±
xH

⊗n |0n⟩ = H⊗n2−n/2
∑

i∈{0,1}n

(−1)f(i) |i⟩

= 2−n/2
∑

i∈{0,1}n

(−1)f(i)
∑

j∈{0,1}n

(−1)i·j |j⟩

The amplitude of the state |0⟩ reveals the result: zero for balanced functions and
±1 for constant functions. Thus, only a single query is needed. In contrast, clas-
sical computation would require at least 2n/2 +1 queries. However, a randomized
classical algorithm can find the result with a small error probability using a con-
stant number of queries.

The second example is the Bernstein-Vazirani problem. Here, for N = 2n

and x ∈ {0, 1}N , there exists an a ∈ {0, 1}n such that xi = (i · a) mod 2 [2]. The
Bernstein-Vazirani algorithm uses the same quantum circuit as the Deutsch-Jozsa
algorithm, where xi = i · a. Consequently, the second application of H⊗n leads to
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the computational state |a⟩:

H⊗nO±
xH

⊗n |0n⟩ = 2−n/2
∑

i,j∈{0,1}n

(−1)i·a+i·j |j⟩ = |a⟩

For this problem, it has been proven that any classical or randomized algorithm
requires at least O(n) queries to obtain the result with a small error probability,
whereas the quantum algorithm achieves the result with only a single query.
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Quantum period finding and Shor’s algorithm

Ágoston Kaposi

1. Summary

Shor’s algorithm is a fast quantum computing algorithm that factors a natu-
ral number into a nontrivial product of two natural numbers. If ever a quantum
computer large enough is built to factor sufficiently large numbers, it would com-
promise many existing cryptographic protocols, especially those relying on the
difficulty of factoring, such as RSA, leading to the need for quantum-resistant
cryptographic systems. This note basically contains the same as Chapter 5 of [2]
and wants to examine the main ideas of the algorithm.

2. Reduction from Factoring to Period-Finding

The crucial observation of Shor was that there is an efficient quantum algorithm
for the problem of period-finding and that factoring can be reduced to this.

Suppose we want to find factors of the composite number N > 1. We may
assume N is odd and not a prime power, since those cases can easily be filtered out
by a classical algorithm. Consider for a randomly chosen integer x ∈ {2, . . . , N −
1} which is coprime to N . Consider the sequence of {1 = x0 ( mod N), x1 (
mod N), x2 ( mod N), . . . }. Let r be the period of this sequence. Assuming
N is odd and not a prime power (those cases are easy to factor anyway), it can
be shown that with probability ≥ 1/2, the period r is even and xr/2 + 1 and
xr/2 − 1 are not multiples of N [3]. Hence, we have that xr ≡ 1( mod N) ⇔
(xr/2 + 1)(xr/2 − 1) = kN for some k. Note that k > 0 because both xr/2 + 1 > 0
and xr/2 − 1 > 0. Hence xr/2 + 1 or xr/2 − 1 will share a factor with N with high
probability. Thus, the problem of factoring reduces to the period-finding problem.

The period-finding problem: We are given some function f : N → {0, . . . , N−
1} with the property that there is some unknown r ∈ {0, . . . , N − 1} such that
f(a) = f(b) iff a = b mod r. The goal is to find r.
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At first glance, this problem could seem to be easy, it is generally believed that
classical computers cannot solve period-finding efficiently.

We will show below how we can solve this problem efficiently on a quantum com-
puter, using only O(log logN) evaluations of f and O(log logN) quantum Fourier
transforms. An evaluation of f can be viewed as analogous to the application of
a query in the algorithms of the previous chapters.

Shor’s algorithm finds a factor of N using an expected number of

O((logN)2(log logN)2 log log logN)

gates, which is only slightly worse than quadratic in the input length.

3. Shor’s period-finding algorithm

Now we will show how Shor’s algorithm finds the period r of the function f ,
given a black-box that maps |a⟩ |0n⟩ → |a⟩ |f(a)⟩. Let q = 2ℓ such that N2 < q ≤
2N2. Then we can implement the Fourier transform Fq using O((logN)2) gates.
Let Of denote the unitary that maps |a⟩ |0n⟩ → |a⟩ |f(a)⟩, where the first register
consists of ℓ qubits, and the second of n = ⌈d logN⌉ qubits.∣∣0ℓ〉

|0n⟩

Fq

Of

Fq

Shor’s period-finding algorithm is illustrated in the circuit above. Apply the
QFT (or just ℓ Hadamard gates) to the first register to build the uniform super-

position 1√
q

∑q−1
a=0 |a⟩ |0n⟩. Now use the black-box to compute f(a) in quantum

parallel 1√
q

∑q−1
a=0 |a⟩ |f(a)⟩ Observing the second register gives some value f(s),

with s < r. Let m be the number of elements of 0, . . . , q − 1 that map to the
observed value f(s) which are in the form of jr + s (0 ≤ j < m. The second
register is ignored, since it collapses to the classical state |f(s)⟩. In the first we

have 1√
m

∑m−1
j=0 |jr + s⟩. Applying the QFT again gives

(1)
1√
m

m−1∑
j=0

1
√
q

q−1∑
b=0

e2πi
(jr+s)b

q |b⟩ = 1
√
mq

q−1∑
b=0

e2πi
sb
q

m−1∑
j=0

e2πi
jrb
q

 |b⟩

We want to see which |b⟩ have amplitudes with absolute value. Those are the b
we are likely to see if we now measure. Using the sum of geometric series, we
compute:

(2)

m−1∑
j=0

e2πi
jrb
q =

m−1∑
j=0

(
e2πi

rb
q

)j
=

m if e2πi
rb
q = 1

1−e2πimrb
q

1−e2πi rb
q

if e2πi
rb
q ̸= 1

Easy case: r divides q. Suppose r divides q = 2ℓ. For the first case of Eq.(2),
note that e2πirb/q = 1 iff rb/q ∈ N iff b is a multiple of q/r. Such b will have
squared amplitude equal to (m/

√
mq)2 = m/q = 1/r. Since there are exactly
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r such basis states b, together they have all the amplitude: the sum of squares
of those amplitudes is 1, so the amplitudes of b that are not integer multiples
of q/r must all be 0. Thus we are left with a superposition where only the b
that are integer multiples of q/r have nonzero amplitude. Observing this final
superposition gives some random multiple b = cq/r, with c a uniformly random
number in {0, . . . , r − 1}. Thus we get a b such that b/q = c/r, where band q are
known to the algorithm, and c and r are not. There are ϕ(r) ∈ Ω(r/ log log r)
numbers smaller than r that are coprime to r, so c will be coprime to r with
probability Ω(1/ log log r) ≥ Ω(1/ log logN). Accordingly, an expected number
of O(log logN) repetitions of the procedure of this section suffices to obtain a
b = cq/r with c coprime to r. Once we have such a b, we can obtain r as the
denominator by writing b/q in lowest terms. Of course, our algorithm does not
actually know whether c and r are coprime in some particular run of the algorithm,
but it can be efficiently checked classically.

Hard case: r does not divide q. It is actually quite likely that r does
not divide q. However, the same algorithm will still yield with high probability a
b which is close to a multiple of q/r. Note that q/r is no longer an integer, and
m = ⌊q/r⌋, possibly +1. All calculations up to and including Eq. (2) are still valid.
Using |1− eiθ| = 2| sin(θ/2)|, we can rewrite the absolute value of the second case
of Eq. (2) to

(3)
|1− e2πi

mrb
q |

|1− e2πi
rb
q |

=
| sin(πmrb/q)|
| sin(πrb/q)|

The right-hand side is the ratio of two sine-functions of b, where the numerator
oscillates much faster than the denominator because of the additional factor of m.
Note that the denominator is close to 0 (making the ratio large) iff b is close to an
integer multiple of q/r. For most of those b, the numerator will not be close to 0.
Hence, roughly speaking, the ratio will be small if b is far from an integer multiple of
q/r, and large for most b that are close to a multiple of q/r. Doing the calculation
precisely, one can show that with high probability the measurement yields a b
such that |b/q − c/r| ≤ 1/(2q) for a random c ∈ {0, . . . , r − 1}. Equivalently,
|b− cq/r| ≤ 1/2, so the measurement outcome b will be an integer multiple of q/r
rounded up or down to an integer. As in the easy case, b and q are known to us
while c and r are unknown.

Because the known ratio b/q is now not exactly equal to the unknown ratio q/r,
we cannot just try to find r by writing b/q in lowest terms. However, two distinct
fractions, each with denominator ≤ N , must be at least 1/N2 > 1/q apart.
Therefore c/r is the only fraction with denominator ≤ N at distance ≤ 1/2q
from the known ratio b/q. Applying a classical method called continued-fraction
expansion to b/q efficiently gives us the fraction with denominator ≤ N that is
closest to b/q (see [1]). This fraction must be c/r. Again, c and r will be coprime
with probability Ω(1/ log log r), in which case writing c/r in lowest terms gives r.
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Continued-fraction expansion of a real number x

a0 := ⌊x⌋ , x1 := 1/(x− a0) and for n > 0 :

an := ⌊xn⌋ , xn+1 := 1/(xn − an) . . .

The convergents of the expansion approximate x as follows

If x = [a0, . . . , an] =
pn
qn

then

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

q2n
.

Recall that qn increases exponentially with n, so this convergence is quite fast.
Moreover, pn/qn provides the best approximation of x among all fractions with
denominator ≤ qn:

If n > 1, q ≤ qn, p/q ̸= pn/qn, then

∣∣∣∣x− pn
qn

∣∣∣∣ < ∣∣∣∣x− p

q

∣∣∣∣ .
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Simon’s algorithm

Miriam Kosik

1. Introduction

Simon’s algorithm, invented by Daniel Simon in 1994, was the first quantum
algorithm to show an exponential speed-up over the best classical algorithm for
a given problem (in this case - for Simon’s problem). Its importance also stems
from the fact that it served as direct inspiration for Peter Shor to create his famous
quantum factoring algorithm.

2. Simon’s problem statement

Let us start by presenting the problem considered by Simon. A black box
(oracle) is given which implements a function from n-bit binary strings into n-bit
binary strings, i.e. f : {0, 1}n → {0, 1}n such that for all x, y ∈ {0, 1}n:
(1) f(x) = f(y) iff x = y or x = y ⊕ s.

Here, s denotes an n-bit binary string which is considered to be a hidden property
of the oracle and ⊕ denotes addition modulo 2.

Note that f can either be 2-to-1 (if s ̸= 000...0) or 1-to-1 (if s = 000...0). The
essence of Simon’s problem is to determine whether s = 000...0 is the only solution
that fulfils condition (1), querying the oracle as few times as possible. If the trivial
all-zero solution is not the only one, the goal is also to find a non-trivial solution
s.

https://arxiv.org/abs/1907.09415
https://arxiv.org/abs/1907.09415
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2.1. Example of Simon’s oracle with s equals 101. Let us look at an example
of a function f(x) which satisfies Eq. (1). It is presented as a table of values on
the left side in Table 1.

Input: x Output: f(x)
000 000
001 001
010 010
011 011
100 001
101 000
110 011
111 010

Input: |x⟩ Output: Uf |x⟩
|000 000⟩ |000 000⟩
|001 000⟩ |001 001⟩
|010 000⟩ |010 010⟩
|011 000⟩ |011 011⟩
|100 000⟩ |100 001⟩
|101 000⟩ |101 000⟩
|110 000⟩ |110 011⟩
|111 000⟩ |111 010⟩

Table 1. On the left: the action of a classical Simon’s oracle
f(x) with the hidden string s = 101. On the right: the action of
a quantum counterpart of f , denoted as Uf .

Let us consider how one could create a quantum oracle that implements f(x).
We need to keep in mind one important fact - quantum operations must be re-
versible. To ensure this, we make the quantum oracle act on one input register
(denoted |xi⟩) but store the output in a separate register (denoted |xo⟩):

(2) f(x) = y −→ Uf |xi⟩ |xo⟩ = |xi⟩ |xo ⊕ y⟩ .

In this way, the input qubits are never changed and we are guaranteed to get
different outputs for different input values. On the right in Table 1, we can see
the action of the quantum counterpart of f on a selected subset of all possible
inputs. In general, the action on Uf is defined for all possible binary strings as
input values in the second register but for simplicity we will always assume that
the second register is initialized in an all-zero state.

3. Solving Simon’s problem

3.1. Classical approach. How would one approach the problem in a classical
setting? A simple idea is to query the oracle by providing it with random strings
as input, store the input-output pairs and repeat this procedure until you find
a repeating output. This is analogous to the birthday problem since finding any
pair of matching outputs is enough to determine the answer. Hence, on average
Ω(

√
2n) queries are needed to recover s. One can also show that this is the best

classically achievable complexity for this problem (see [1]).

3.2. Quantum algorithm (Simon’s algorithm). The quantum circuit to solve
Simon’s problem is presented below.
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n

n

first register (input) |0⊗n⟩ H⊗n

Uf

H⊗n

second register (output) |0⊗n⟩

The initial state of the system consists of all qubits in state |0⟩. First, a
Hadamard transform is applied to all qubits in the first register:

(3)
∣∣0⊗n〉 ∣∣0⊗n〉 H⊗n

−−−−−−−→ 1√
2n

(|0⟩+ |1⟩)⊗n
∣∣0⊗n〉 = 1√

2n

∑
x∈{0,1}n

|x⟩
∣∣0⊗n〉

Next, the query to the oracle is made, which causes the second register to
change:

(4)
1√
2n

∑
x∈{0,1}n

|x⟩
∣∣0⊗n〉 Uf−−−−−→ 1√

2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩

Next, we measure the second register. This will yield some particular value of
f(x) as a result. Let us denote the possible arguments that yield that value xm
and xm ⊕ s, and the measured result is then f(xm).

(5)
1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ measurement of−−−−−−−−−−−→
2nd register

1√
2
(|xm⟩+ |xm ⊕ s⟩) |f(xm)⟩

We will now ignore the second register and again apply Hadamard transforms
to the first n qubits:

1√
2
(|xm⟩+ |xm ⊕ s⟩) |f(xm)⟩ H⊗n

−−−−−−−→

1√
2n+1

 ∑
j∈{0,1}n

(−1)xm·j |j⟩+
∑

j∈{0,1}n

(−1)(xm⊕s)·j |j⟩

 =

=
1√
2n+1

∑
j∈{0,1}n

(−1)xm·j (1 + (−1)s·j) |j⟩ .(6)

As a result, we obtain a superposition of states labelled |j⟩, which have a non-
zero amplitude if and only if s · j mod 2 = 0. Hence, measuring state |j⟩ and
receiving as a result the some value j gives information about s. Precisely, it gives
a random element from the set {j | s · j mod 2 = 0} - we get a linear equation that
involves s.

We repeat the quantum part multiple times until we get a system of n − 1
linear equations. This system will have either one or two solutions. If f(x) is
1-to-1, the only solution will be the all-zero string 000....0. If it is 2-to-1, there
will be another non-trivial for solution s. Such a system of linear equations can be
solved efficiently using a classical algorithm, e.g. Gaussian elimination, which has
runtime O(n3) for an n × n system of equations. Hence, the overall complexity
of the quantum algorithm is O(n) oracles queries and polynomially many other
operations.
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Appendix A. Appendix - Simon’s oracle implementation

In the oracle computation model, an oracle is an operation that has some prop-
erty which is hidden from the rest of the world. The term black box is also often
used equivalently. It is an object that takes some input, returns an output but
you have no access or information about what is happening inside. The goal of
most quantum algorithms is to query the black box, analyze its outputs and in
this way - retrieve the hidden information.

In reality, we cannot look into the oracle. However, to simulate quantum algo-
rithms, one needs to implement a model of the oracle. Below, the implementation
steps, an exemplary circuit and an a Qiskit implementation of Simon’s oracle are
given.
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Implementation steps:

• copy the contents of first register onto the second one (using CNOT gates),
• if s is not all equal zero, find the smallest index j for which sj = 1. If
xj = 0, then XOR the second register with s. Otherwise, do not do
anything.

Circuit for the Simon’s oracle hiding string s = 101.

H

H

H

X

X X

Qiskit implementation of the Simon’s oracle hiding string s.

1 from qiskit import QuantumCircuit

2

3 def simon_oracle(s):

4

5 qc = QuantumCircuit(2*len(s))

6 least_1_found = False

7 for idx, i in enumerate(s):

8

9 # find the smallest index j for which s_j is 1

10 if i == "1" and not least_1_found:

11 least_1_idx = idx

12 least_1_found = True

13

14 # copy contents of 1st register onto second

15 qc.cx(idx, idx + len(s))

16

17 for idx, i in enumerate(s):

18 if i == "1" and least_1_found:

19 qc.cx(least_1_idx, idx + len(s))

20

21 return qc
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Quantum Singular Value Transformation

James Berkeley Larsen

1. Introduction

In this report, we introduce the quantum singular value transformation (QSVT).
We mainly base the content on these notes by András Gilyén and §3.1-3.3 of [1].

The basic idea of QSVT is to combine methods from quantum signal processing
(QSP) with block-encoding to construct a quantum circuit that can perform poly-
nomial transformations of the singular values of arbitrary rectangular matrices.
This seemingly abstract task has been shown to provide a unifying framework for
all major quantum algorithms, somehow capturing the speedups present in search,
phase estimation, and Hamiltonian simulation [2].

2. The Heart of the QSVT

Let U ∈ CN×N be a block-encoding of A as follows:

U =

(
A B
C D

)
,

where A and D may be rectangular with different dimensions. Let Π and Π′ be
the orthogonal projectors such that A = Π′UΠ and D = (I − Π′)U(I − Π). Let
us also define the following operators:

ZΠ(ϕ) := eiϕΠ+ e−iϕ(I −Π),(1)

UΦ := ZΠ(′)(ϕd) · · ·U† · ZΠ′(ϕ3) · U · ZΠ(ϕ2) · U† · ZΠ′(ϕ1) · U · ZΠ(ϕ0),(2)

where Φ = (ϕ0, ϕ1, ϕ2, . . . , ϕd). Note that Eq. (1) has a straightforward implemen-
tation on a quantum computer using Z rotation gates on an ancillary qubit. The
heart of the QSVT is the fact that Eq. (2) applies a polynomial transformation to
the singular values of A and D. More concretely,

(3) UΦ =



(
AP (A†A) BQ∗(D†D)

CQ(A†A) DP ∗(D†D)

)
for d odd(

P (A†A) C†DQ∗(D†D)

B†AQ(A†A) P ∗(D†D)

)
for d even,

for some P,Q ∈ C[x] with deg(P ) ≤ d
2 and deg(Q) ≤ d−1

2 . In §3, we will provide
an inductive derivation of Eq. (3) to reveal a recurrence relation that defines the
polynomials P and Q. We will then conclude in §4 by showing how to choose the
angles Φ given some polynomial P .
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3. Derivation of Polynomial Recurrence Relations

For the base case of our inductive derivation, notice that when d = 0,

U(ϕ0) = ZΠ(ϕ0) =

(
eiϕ0I 0
0 e−iϕ0I

)
,

i.e., P ≡ eiϕ0 and Q ≡ 0. These (constant) polynomials will also serve as the base
case for our recurrence relations.

We let [P (x)|x = M (SV )] denote the application of a polynomial P to the sin-
gular values of a matrix M =

∑
i σi|ϕi⟩⟨ψi|, i.e., P (M†M) = [P (x2)|x = M (SV )]

and MP (M†M) = [xP (x2)|x = M (SV )]. We only treat the case for even d,
the odd case can be derived using the same steps. Let PΦ(x) := P (x2) and
QΦ(x) := xQ(x2). By the assumed unitarity of U ,

(4) I = UU† =

(
A B
C D

)
·
(
A† C†

B† D†

)
=

(
AA† +BB† AC† +BD†

CA† +DB† CC† +DD†

)
.

We then can derive that

ZΠ′(−ϕd+1) · U(ϕ0,ϕ1,··· ,ϕd,ϕd+1) = U · UΦ

=

(
A B
C D

)
·
(

[PΦ(x)|x = A(SV )] C† · [Q∗
Φ(x)|x = D(SV )]

B† · [QΦ(x)|x = A(SV )] [P ∗
Φ(x)|x = D(SV )]

)(5)

=

(
[xPΦ(x) + (1− x2)QΦ(x)|x = A(SV )] B · [P ∗

Φ(x)− xQ∗
Φ(x)|x = D(SV )]

C · [PΦ(x)− xQΦ(x)|x = A(SV )] [xP ∗
Φ(x) + (1− x2)Q∗

Φ(x)|x = D(SV )]

)
,

(6)

where Φ = (ϕ0, · · · , ϕd), Eq. (5) invokes the inductive hypothesis, and Eq. (6) uses
the four matrix identities provided by Eq. (4).

We have thus arrived at the following recurrence relations for the polynomials
PΦ and QΦ:

d = 0 : P(ϕ0) = eiϕ0 , Q(ϕ0) = 0,

d→ d+ 1 :{
P(ϕ0,ϕ1,··· ,ϕd,ϕd+1) = eiϕd+1

[
xP(ϕ0,ϕ1,··· ,ϕd)(x) + (1− x2)Q(ϕ0,ϕ1,··· ,ϕd)(x)

]
,

Q(ϕ0,ϕ1,··· ,ϕd,ϕd+1) = e−iϕd+1
[
P(ϕ0,ϕ1,··· ,ϕd)(x)− xQ(ϕ0,ϕ1,··· ,ϕd)(x)

]
.

Note that PΦ and QΦ have opposite but well-defined parity. Note that for even
d, the original P and Q polynomials from Eq. (3) satisfy P (x) = PΦ(

√
x) and

Q(x) = 1√
x
QΦ(

√
x) (the case for odd d is similar).

4. Choosing Angles for a Polynomial

In §3, we derived what polynomial transforms would be accomplished by Eq. (3)
given some angles Φ. It is important to note that the angles determine the poly-
nomials independent of the choice or dimensions of sub-blocks of U . Specifi-
cally, QSP considers the simple case when U is 2 × 2. For example, if U =
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(
x

√
1− x2√

1− x2 −x

)
, we have that UΦ =

(
PΦ(x)

√
1− x2Q∗

Φ(−x)√
1− x2QΦ(x) P ∗

Φ(−x)

)
.

Enforcing unitarity of UΦ in this case gives us an additional requirement that

(7) |PΦ(x)|2 + (1− x2)|QΦ(x)|2 = 1 ∀x ∈ [−1, 1].

We can now try to reverse the process and derive the angles given two poly-
nomials P and Q with deg(P ) = deg(Q) + 1. Given the recurrence relations PΦ

and QΦ must eventually satisfy, the leading coefficients pd and qd−1 must have the
same magnitude, so let ϕd := 1

2i (ln pd − ln qd−1) (i.e. e
2iϕd = pd/qd−1). Next, let

P̃ (x) and Q̃(x) be defined as follows:(
P̃ (x)√

1− x2Q̃(x)

)
=

(
x

√
1− x2√

1− x2 −x

)
·
(
e−iϕd 0
0 eiϕd

)
·
(

P (x)√
1− x2Q(x)

)
.

A straightforward matrix computation reveals that the leading coefficients cancel
out, resulting in deg(P̃ ) = deg(P ) − 1 and deg(Q̃) = deg(Q) − 1. Therefore, the
process can be iterated d times to find ϕd−1, ..., ϕ0, with each iteration decreasing
the degree of the target polynomials.

Often, a practitioner only cares about applying a real polynomial transformation
P ∈ R[x] to the singular values of the A block of U . In this case, one can find a

corresponding P̂Φ with R(P̂Φ) = PΦ and Q̂Φ satisfying the stringent form of the
recurrence relations if and only if:

(8) |PΦ(x)| ≤ 1 ∀x ∈ [−1, 1].

Therefore, one need only check the condition from Eq. (8) to guarantee that suit-
able angles can be found for the desired transformation.
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The SU(2) nonlinear Fourier series of one sided square summable
sequences

Shao Liu

We start by defining the SU(2) nonlinear Fourier series of sequences in ℓ2(Z ∩
[0,∞)). We then show that the SU(2) nonlinear Fourier series maps ℓ2(Z∩ [0,∞))
bijectively to some suitable space.

We mainly follow [1].
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1. Definition of SU(2) nonlinear Fourier series of sequences in
ℓ2(Z ∩ [0,∞))

1.1. Sequences with finite support. For a sequence F : Z → C with finite
support, define the matrix valued function G on C∪{∞} by the recursive equation

Gk(z) = Gk−1(z)
1√

1 + |Fk|2

(
1 Fkz

k

−Fkz−k 1

)
(1)

with the initial condition

lim
k→−∞

Gk(z) =

(
1 0
0 1

)
,

and define the SU(2) nonlinear Fourier series

G(z) = lim
k→∞

Gk(z) =

(
a(z) b(z)

−b∗(z) a∗(z)

)
.(2)

The matrix factors in (1) are in SU(2) on T and hence so is G. In particular,

aa∗ + bb∗ = 1.

We write the SU(2) nonlinear Fourier series of the sequence F on Z as︷︸︸︷
F := G = (a, b).

Here we identify the row vector (a, b) with the matrix function as in (2). We also
write (ak, bk) := Gk. From the multilinear expansion of a, we have

a(∞) =
∏
n∈Z

(
1 + |Fn|2

)− 1
2 .(3)

1.2. One sided square summable sequences. We use (3) to extend the defi-
nition. Let L be the set of pairs of measurable functions (a, b) on T such that

aa∗ + bb∗ = 1

almost everywhere on T and a is in H2(D∗) with a(∞) > 0. We introduce the
following metric on L:

ρ((a, b), (c, d)) =

(∫
T
|a− c|2

) 1
2

+

(∫
T
|b− d|2

) 1
2

+ |log(a(∞))− log(c(∞))| .

Let H be the set of functions in L such that b is in H2(D). H is complete.

Theorem 1. Let F be a sequence in ℓ2(Z) with support in [0,∞). The sequence
(ak, bk) converges in L to an element (a, b) in H. We have

a(∞) =
∏
n≥0

(
1 + |Fn|2

)− 1
2 .

We call the limit (a, b) in this theorem the nonlinear Fourier series of F .
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2. Properties of the SU(2) nonlinear Fourier series

The key property is that the SU(2) nonlinear Fourier series maps ℓ2(Z ∩ [0,∞))
bijectively to some space.

We now define this space. Let H be the set of functions in H such that a∗ and
b have no common inner factor in the sense that if a∗g−1 and bg−1 are in H2(D)
for some inner function g on T, then g is constant. Note that the bar in H has a
meaning of a closure rather than a complex conjugation.

Theorem 2. The SU(2) nonlinear Fourier series maps ℓ2(Z ∩ [0,∞)) bijectively
to H.

To prove this theorem, we need the following theorem which shows how to invert
the SU(2) nonlinear Fourier series.

Theorem 3. Let (a, b) ∈ H. There is a unique y ∈ C such that (c, d) is in H
where

(c(z), d(z)z) :=
(
1 + |y|2

)− 1
2 (1,−y) (a(z), b(z))

for almost all z ∈ T. Using this statement, define the functions (an, bn) recursively
for n ≥ 0 by

(a0, b0) = (a, b)

(an+1(z), bn+1(z)z) =
(
1 + |Fn|2

)− 1
2 (1,−Fn) (an(z), bn(z)) ,

where Fn is the unique number such that (an+1, bn+1) ∈ H. Then the sequence
{Fn} is square summable and

a(∞) ≤
∏
n≥0

(
1 + |Fn|2

)− 1
2 .(4)

If (a, b) /∈ H, then we have strict inequality in (4).

The sequence produced in this theorem is called the layer stripping sequence of
(a, b).
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The nonlinear Fourier transform, square integrable on half line

Ricardo Motta
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1. Introduction

As established in [1, Lecture 1], given F = {Fn}n∈Z a finite sequence, we
recursively define

(
an bn

)
:=
(
an−1 bn−1

)
Tn, where

(1) Tn =
1√

1− |Fn|2

(
1 Fnz

n

Fnz
−n 1

)
and1

(
a−∞ b−∞

)
=
(
1 0

)
. The nonlinear Fourier transform of this sequence F

is the pair of functions (a(z), b(z)) in the parameter z ∈ T, where an and bn are
equal to a and b for sufficiently large positive n. We denote the NLFT of F as︷︸︸︷

F (z) = (a(z), b(z)).

The goal of [1, Lecture 2] is to extend the nonlinear Fourier transform (NLFT)
to square-summable sequences supported on the right half-line, with values in D,
and to prove that it defines a homeomorphism between this space and another
space H, which can be explicitly described.

The challenge arises from the fact that this transform for finite sequences is
an infinite product of transfer matrices (1), whose pointwise convergence is not
guaranteed here. To overcome this, we proceed by approximation arguments using
Cauchy sequences and some tools of complex analysis.

2. Extension to half-line square summable sequences

The authors’ approach is to draw parallels with classical Fourier analysis, and
the first ingredient is the extension of Plancherel’s Theorem to this context.

Lemma 1. Let F = {Fn}n∈Z be a finite sequence of elements in the unit disc.

Consider the nonlinear transform of F , denoted by
︷︸︸︷
F = (a, b). Then,

(2)
1

2

∫
T
log
(
1 + |b(z)|2

)
dz =

∫
T
log |a(z)| dz = −1

2

∑
n

log
(
1− |Fn|2

)
.

Similar to the linear Fourier Transform in L2, the Plancherel identity in (2) will
be a fundamental key to define the NLFT of F ∈ ℓ2(Z≥0,D) as a limit of a Cauchy
sequence in some appropriate space H.

To construct this space, we first consider K to be the space of all measurable
functions (a(z), b(z)) ∈ SU (1, 1) on the circle with log |a(z)| ∈ L1(T). We can
embed this space into the space L1(T)× L2(T)× L2(T) by mapping the function
(a, b) to the function (log |a|, b/|a|, a/|a|) and this embedding is indeed injective.
We endow the space K with the inherited metric, so that the distance between
(a, b) and (a′, b′) is given by(∫

T
log |a| − log |a′|

)
+

(∫
T
|b/|a| − b′/|a′||2

)1/2

+

(∫
T
|a/|a| − a′/|a′||2

)1/2

.

This makes K a complete metric space.

1Here a−∞ and b−∞ need to be interpreted as an and bn for sufficiently small n.
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Furthermore, we also need to construct H and L, two subspaces of K. To
achieve this, we must introduce the concept of an outer function.

Definition 2. We say g is an outer function in D if g belongs to the Nevanlinna
class2 and there exists a function G : T → [0,∞), with G ∈ L1(T), such that

g(z) = exp

(∫ 2π

0

eiθ + z

eiθ − z
G(eiθ) dθ

)
for z ∈ D.

Let L ⊂ K be the subspace of pairs (a, b) where a is the boundary value of an
outer function a∗ on the unit disk D that is positive at 0, and H be the subspace
of L where b/a∗ is the boundary value of an analytic function in the Hardy space
H2(D). The space H is closed in L, and L is closed in K. Moreover, if F is a
finite sequence supported on Z≥0, then (a, b) ∈ H.

Lemma 3. Let F be a sequence in ℓ2(Z≥0,D) and let F (≤N) denote the truncations

to [0, N ]. Then (aN , bN ) =
︷ ︸︸ ︷
F (≤N) is a Cauchy sequence in H.

Given that
︷ ︸︸ ︷
F (≤N) form a Cauchy sequence in H, we define

︷︸︸︷
F as the limit of

this sequence. The distance between the NLFT of the truncated sequence and the
NLFT of the full sequence converges to 0, ensuring that the Plancherel identity
(2) holds on all of ℓ2(Z≥0,D). The theorem below follows from several technical
results in [1, Lecture 2].

Theorem 4. The NLFT is a homeomorphism from ℓ2(Z≥0,D) to H.

Sketch of Proof. For the continuity of the NLFT, the strategy relies on truncating
the sequences and controlling the error introduced by this truncation. One term
of this approximation is controlled by using the equivalence of norms in finite-
dimensional spaces. Therefore, this proof does not guarantee uniform continuity
due to the lack of control over the sequence’s length when switching from ℓ2 to ℓ1

norms.
On the other hand, the proof shows that each term Fn in the inverse NLFT

depends continuously on (a, b). This is true for F0 by the mean formula, and using
induction for higher-order terms, continuity is shown via Möbius transformation,
which induces a Lipschitz distortion that depends on F0. To finish, we combine
this with an approximation argument and the Plancherel identity. □

Finally, there are higher-order identities of Plancherel type, which arise from
calculating higher derivatives of log(a∗) at 0.

2We define the Nevanlinna class as

N =

{
f ∈ Hol(D) | sup

r<1

∫
T
log+ |f(rs)| ds < ∞

}
.
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Lemma 5. For F = {Fn}n in ℓ2(Z≥0,D), we have

2

∫
T
z−1 log |a|(z) =

∑
n

FnFn+1

and

4

∫
T
z−2 log |a|(z) = −

∑
n

(FnFn+1)
2 + 2

∑
n

Fn(1− |Fn+1|2)Fn+2.
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Iterative methods for finding QSP angles and infinite quantum signal
processing

Hongkang Ni

Let

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, W (x) = ei arccos(x)X =

(
x i

√
1− x2

i
√
1− x2 x

)
.

Question: Given an even (or odd) polynomial f(x) of degree d that satisfies
maxx∈[−1,1] |f(x)| ≤ 1, how to find the phase factor Ψ = (ψ0, . . . , ψd) such that

U(x,Ψ) : = eiψ0ZW (x)eiψ1ZW (x) · · · eiψd−1ZW (x)eiψdZ

=

(
P (x) Q(x)

√
1− x2

Q∗(x)
√
1− x2 P ∗(x)

)
,

such that Re[P ] = f?

1. Iterative method for phase factor finding

We will introduce three iterative methods for phase factor finding, which are
optimization-based method (1), FPI (5), and Newton’s iteration (6).

In general, the phase factors are not unique, which can be seen by counting the
degree of freedom (d̃ = ⌊d+2

2 ⌋ v.s. d). To make the degree of freedom match, we
can restrict the phase factor to be symmetric, i.e.

(ψ0, . . . , ψd) = (ϕd̃−1, . . . , ϕ0, . . . , ϕd̃−1),

and we may call Φ = (ϕ0, . . . , ϕd̃−1) the reduced phase factors. By a little abuse
of notations, we write U(x,Ψ) = U(x,Φ) if Ψ is symmetric and corresponds to
reduced phase factor Φ. Under this symmetric restriction, the existence of phase
factors still holds, and there are only finite sets of phase factors corresponding to
a given f(x). [1] suggest to solve the optimization problem

(1) L(Φ) =
1

d̃

d̃∑
j=1

|Re [PΦ (xj)]− f (xj)|2 .
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where xj = cos
(

(2j−1)π

4d̃

)
’s are the Chebyshev nodes.

Theorem 1 ([2, Cor.7]). If the target polynomial satisfies ∥f∥∞ ≤
√
3

20πd̃
, then the

optimization based method will converge to Φ∗ with initial guess

(2) Φ0 = (0, 0, . . . , 0,
π

4
).

Our next goal is to find a method that can get rid of this d-reliance.
We can construct a map from Φ to the Chebyshev coefficients of g(x,Φ) =

Im[PΦ(x)]. (Notice we switch from the real part to the imaginary part because
they only differ by a π

4 rotation at the tail, so they are essentially equivalent. We
adopt the imaginary part here to make the initial point in (2) into (0, . . . , 0), thus
more convenient.) We call it as

F : Rd̃ → Rd̃ : Φ 7→ c = (c0, c1, . . . , cd̃−1),

where c is defined by the coefficients of the Chebyshev expansion

g(x,Φ) =

d̃−1∑
j=0

cjT2j(x)

where T2j(x) is the 2j-th Chebyshev polynomial. Notice that after the degree of
freedom matches, we can convert the problem into solving a non-linear equation:
given the Chebyshev coefficients c of f , solve a Φ such that

F (Φ) = c.

Notice that F in invariant under padding, which is F (c0, . . . , cd̃−1, 0) = (Φ, 0) ∈
Rd̃+1, we can naturally extend F to R∞.

Lemma 2 ([3, Lem.11] ). For any Φ ∈ R∞, it holds that

(3) ∥F (Φ)∥1 ≤ sinh (2∥Φ∥1) .

One can find the Jacobian DF (0) = 2I, and we have the following perturbation
result.

Lemma 3 ([3, Lem.15] Lipschitz continuity of the Jacobian matrix DF ). For any
δ > 0 and any Φ(j) ∈ R∞ with

∥∥Φ(j)
∥∥
1
≤ δ, j = 1, 2, it holds that

(4)
∥∥∥DF (Φ(1))−DF (Φ(2))

∥∥∥
1
≤ C2(δ)

∥∥∥Φ(1) − Φ(2)
∥∥∥
1
,

where C2(δ) = 4 sinh(2δ).

Therefore, we can obtain the following result using the inverse mapping theorem.

Theorem 4 ([3, Thm.6] FPI iteration method). For ∥c∥1 ≤ 0.861, there exists a
Φ such that F (Φ) = c, and the fixed point iteration

(5) Φ0 = 0, Φt+1 = Φt − 1

2

(
F
(
Φt
)
− c
)

converges because it is a contraction mapping under the ℓ1 norm.
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We can similarly prove that the Newton iteration

(6) Φ0 = 0, Φt+1 = Φt −DF (Φt)−1
(
F
(
Φt
)
− c
)

converges for all c such that ∥c∥1 ≤ some constant.
[4] shows that the Jacobian matrix DF (Φ) can be calculated efficiently in only

O(d2 log d) time, which is almost the same order complexity as calculating F (Φ).
Although Newton’s method involves solving a dense linear system at each step, the
most significant feature is that the number of iterations is usually much smaller
than FPI and the optimization-based method. It is also observed in [4] that FPI
can fail for some fully-coherent f , i.e. ∥f∥∞ approaches 1, while Newton’s iteration
always works robustly.

2. Decaying properties of phase factors

Using that R∞ is dense in ℓ1 space and the smoothness of F , we can further
extend F as a map F : ℓ1 → ℓ1, and it is invertible near the origin. For ∥c∥1 <
0.902, there exists a Φ ∈ ℓ1 such that F (Φ) = c.

Theorem 5 ([3, Thm.4] Decay properties of reduced phase factors). Given a

target function f with ∥c∥1 < 0.902, and Φ⋆ := F
−1

(c) = (ϕ0, ϕ1, . . .) ∈ ℓ1, then
there exists constants C,C ′ such that for any n,

(7) C ′
∑
k>n

|ck| ≤
∑
k>n

|ϕk| ≤ C
∑
k>n

|ck|.
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Riemann-Hilbert problem for rational functions

Kristina Oganesyan

1. Definitions

Let us define the following classes:

L := {SU(1, 1)− valued measurable (a, b) : a has outer extension to D∗, a(∞) > 0},
H := {(a, b) ∈ L : b/a∗ has a holomorphic extension to D which is in H2(D)},
H∗ := {(a, b) ∈ L : b/a has a holomorphic extension to D∗ which is in H2(D∗)},
and let H0 := {(a, b) ∈ H : b(0) = 0}, H∗

0 := {(a, b) ∈ H∗ : b(∞) = 0}. Note
that L is exactly the class of nonlinear Fourier transforms of ℓ2 sequences.
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We will call a pair (a, b) rational if both a and b are rational functions. We also
say that a rational function g is subordinate to a rational function f on a certain
domain if for all points z in the domain with ord(g, z) > 0 we have ord(f, z) ≥
ord(g, z).

For (a, b) ∈ L, the factorization

(a, b) = (a−, b−)(a+, b+)

is called a Riemann-Hilbert factorization if (a−, b−) ∈ H∗
0 and (a+, b+) ∈ H.

2. Properties of rational pairs

First of all, we establish the following important properties of rational pairs
(a, b) and their factorizations.

Lemma 1. (Parametrization by b). For a rational function b, there is a
unique rational function a such that aa∗ = 1 + bb∗, a has no zeros and poles in
D∗, and a(∞) > 0. This is the unique function a such that (a, b) ∈ L.

For rational (a, b) ∈ L, we have (a, b) ∈ H if and only if b has no poles in D,
and (a, b) ∈ H0 if and only if in addition b(0) = 0. (Similarly, we have (a, b) ∈ H∗

if and only if b has no poles in D∗, and (a, b) ∈ H∗
0 if and only if in addition

b(∞) = 0.)
Lemma 2. (Preservation of the class of rational functions). Let (a, b) ∈

L be rational. Given a Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+),

we have that (a−, b−) and (a+, b+) are also rational.
Lemma 3. (Subordination). Let (a, b) ∈ L be rational. Then a is subordi-

nate to bb∗. For a Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+),

the functions b− and b+ are subordinate to b.

In light of the results above, we can reduce the Riemann-Hilbert problem for
rational functions to a finite dimensional algebraic problem.

3. Existence and uniqueness of the Riemann-Hilbert factorization
for rational functions

With Lemmas 1-3 in hand, we are able to prove our main result.
Theorem 1. Let (a, b) ∈ L be rational. There exists a unique Riemann-Hilbert

factorization

(a, b) = (a−, b−)(a+, b+)

with either a) b+ or b) b− having no poles on T.

Recall that, according to the triple factorization theorem, for any (a, b) ∈ L,
there is a unique factorization

(a, b) = (a−−, b−−)(a0, b0)(a++, b++)
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such that (a−−, b−−) ∈ H∗
0, (a0, b0) ∈ H∗

0 ∩H, (a++, b++) ∈ H, and (a−−, b−−)
and (a++, b++) do not have nontrivial Riemann-Hilbert factorizations. Moreover,
one can show that for a pair (a, b) ∈ H, the factor (a−, b−) in its Riemann-Hilbert
factorization also belongs to H. It therefore follows that the factor (a+, b+) in
part a) of Theorem 1 coincides with (a++, b++) (and similarly, the factor (a−, b−)
in part b) of Theorem 1 coincides with (a−−, b−−)).

4. Factorization of the middle factor in the triple factorization
for rational functions

For the sake of completeness, we comment (without proof) also on the descrip-
tion of the factorizations of the middle term in the triple factorization.

Theorem 2. Consider a rational (a, b) ∈ H ∩H∗
0. Let zj ∈ T, j = 1, ..., N be

the distinct poles of a and let nj be the order of the pole zj . Let the nonnegative
numbers n+j , n

−
j ≤ nj , j = 1, ..., N be such that for each j either

n+j + n−j = nj (split case)

or

n+j + n−j − 1 = nj (shared case).

Assume also that for each j in the shared case we are given positive numbers
µ+
j , µ

−
j such that

µ+
j µ

−
j = µj ,

where µj is defined by

1

aa∗
(ζ) = µj(ζ − zj)

nj

(1
ζ
− 1

zj

)nj

+O(ζ − zj)
2nj+1.

Then there exists a unique Riemann-Hilbert factorization

(a, b) = (a−, b−)(a+, b+)

satisfying

ord(a+, zj) = n+j , ord(a−, zj) = n−j ,

and, for j in the shared case,

A+ :=
a∗−
a+a∗

= −µ+
j zj(ζ − zj)

n+
j −1

(1
ζ
− 1

z

)n+
j

+O((ζ − zj)
2n+

j ),

A− :=
a+
a∗−a

= −µ−
j z

∗
j (ζ − zj)

n−
j

(1
ζ
− 1

z

)n−
j −1

+O((ζ − zj)
2n−

j ).

Moreover, all Riemann-Hilbert factorizations are obtained in this way.
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The SU(2) Nonlinear Fourier Transform on ℓ2(Z)
Lorenzo Pompili

Recall the following:

• If g ∈ Hp(D) has modulus 1 a.e. on T, then g is called an inner function.
• Two functions a, b ∈ H2(D) are said to have no common inner factor if for

every inner function g, both a/g and b/g are H2(D) functions if and only
if g is constant.

• A function g ∈ L∞(T) is called outer if log |g| ∈ L1(T) and g = eG where
G = log |g| + iH(log |g|). Note that if g is outer, then G has an analytic
extension to D with real part bounded above, and hence g ∈ H∞(D).

1. Introduction

We follow [2].
From the previous talk (after using the symmetries of the NLFT), we consider

the spaces H≥k, H≤k so that the NLFT maps ℓ2(Z ∩ [k,∞)) to H≥k and ℓ2(Z ∩
(−∞, k]) to H≤k bijectively.

Analogously to the SU(1, 1) case, we can split F ∈ ℓ2(Z) as F−+F+, where F−
is supported in (−∞,−1] and F+ is supported in [0,∞), and define the nonlinear
Fourier transform of F as

(1) (a, b) := (a−, b−)(a+, b+),

where (a−, b−) ∈ H≤−1, (a+, b+) ∈ H≥0 denote the NLFT of F±. As in the
SU(1, 1) case, finding a preimage of (a, b) is equivalent to finding a factorization
(1) with (a−, b−) ∈ H≤−1, (a+, b+) ∈ H≥0.

For the reader’s convenience, we summarize the main findings on the SU(2)
NLFT on ℓ2(Z) before diving more precisely into the factorization problem.

• The SU(2) NLFT maps ℓ2(Z) to L.

• The NLFT
︷︸︸︷
F = (a, b) of a sequence F ∈ ℓ2(Z) satisfies the condition

a∗(0) =
∏
j

(1 + |Fj |2)−
1
2 > 0

and the nonlinear Plancherel inequality1∑
n

(1 + |Fn|2) ≥ −
∫
T

log
(
1− |b(z)|2

)
,

1Note that it holds∑
n

(1 + |Fn|2) = −2 log |a∗(0)|,
∫
T

log
(
1− |b(z)|2

)
= 2

∫
T

log |a(z)| .
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where equality holds if and only if a∗ is outer. In particular, it holds the
Szegő condition

(2)

∫
T

log
(
1− |b(z)|2

)
> −∞ .

• Unlike the SU(1, 1) case, the coefficient a∗ is not necessarily outer (in
particular, it can have zeros in D).

• If we restrict ourselves to the class B of SU(2)-valued function (a, b) such
that a is outer2 with a∗(0) > 0, we have existence of a unique R-H fac-
torization, hence the NLFT is bijective on the set of F such that a∗ is
outer.

• For any given b ∈ L∞(T) with ∥b∥L∞ ≤ 1, there exists a unique a such
that a∗ is outer and (a, b) is a NLFT [2, Theorem 4]. There exist NLFT
with same b but different a (b ≡ 0 → solitons).

2. The factorization problem

Let B be the set of pairs of measurable functions (a, b) on T for which a∗ is outer
with a∗(0) > 0, and

aa∗ + bb∗ = 1

almost everywhere on T.

Theorem 1 ([2, Theorem 5], Riemann-Hilbert factorization). Let (a, b) ∈ B.
Then for each k ∈ Z, there exists a unique factorization

(a, b) = (a<k, b<k)(a≥k, b≥k)

with (a<k, b<k) ∈ H≤k−1 and (a≥k, b≥k) ∈ H≥k.

Fix (a, b) ∈ B from now on. It is enough to look at the case k = 0, and we
use the notation (a±, b±) as above. We aim at finding (a+, b+). Similarly to the
SU(1, 1) case, after clever rewriting, one first argues that for any such pair (a+, b+)
we have that

(3)

(
A
B

)
:= a+(∞)

(
a+
b+

)
has to solve the equation

(4) (Id+M)

(
A
B

)
=

(
1
0

)
,

where

M :=

(
0 PD∗

b∗

a∗

−PD
b
a 0

)
.

and where PD, PD∗ are the projections from L2(T) to H2(D), H2(D∗). The equa-
tion makes sense if inf |a| > 0, since then M is bounded on the Hilbert space

H := H2(D∗)×H2(D) ⊂ L2(T)× L2(T).

2The outerness of a∗ and the relation aa∗ + bb∗ = 1 directly imply the Szegő condition (2).
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In that case, it can be shown that finding a solution (A,B) to (4) is equivalent
to finding (a+, b+) that solves the R-H factorization problem through equation
(3)(see the steps in the proof of [1, Theorem 11]). The case of general (a, b) ∈ B
is more complicated due to the unboundedness of 1/a, and the above reduction is
formal for now.

In [1] it was shown that if ∥b∥L∞ < 1/
√
2, M has norm less than 1, and so

(Id+M) can be inverted as a Neumann series. For general (a, b) ∈ B, M is not
bounded. The main idea of [2] is show thatM is skew-adjoint with an appropriate
dense domain in H, so that (Id+M)−1 is well-defined, bounded and injective.

Let

PH =

(
PD 0
0 PD∗

)
denote the L2 × L2 orthogonal projection onto H. Within the Hilbert space H,
define E to be the subspace of elements f ∈ H for which

PH

(
0 b∗

a∗η

− b
aη

0

)
f

converges weakly in H as η → 0, where a∗η is defined to be the unique outer
function on D whose boundary values on T satisfy

log |aη| := 1{|a|>η} log |a| .

It is possible to show that for (a, b) ∈ B, E is dense in H as it contains the
dense subspace D := aH2(D∗) × a∗H2(D). We define the unbounded operator
M : E → H by

Mf := lim
η→0

PH

(
0 b∗

a∗η

− b
aη

0

)
f ,

where the above is a weak limit.

Lemma 2. Let (a, b) ∈ B. The unbounded operator iM is self-adjoint and hence
has real spectrum. In particular, (Id+M)−1 is bounded on H.

Additional technical work is needed to make the above formal reduction rigorous
and prove Theorem 1.
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Alternative and multivariable quantum signal processing

Zane Marius Rossi

(joint work with Isaac Chuang)

1. Overview

Quantum algorithms remain difficult to design and interpret; correspondingly,
great effort has been spent to not only generate algorithms but formalize the motifs
of quantum advantage. These desires have been partially addressed with quantum
signal processing (QSP) [1, 2], which allows one to transform the spectrum of
large linear operators by tunable polynomial functions using a simple alternating
ansatz, in turn unifying and simplifying most known quantum algorithms.

QSP’s success follows from a thorough understanding of the permitted maps of
type T → SU(2) (from the complex unit circle to the two-dimensional special uni-
tary group) affiliated with QSP’s ansatz. A natural extension promotes this study
to the multivariable setting, i.e., maps of type T⊗n → SU(2). Physically, here
the computing parity is allowed access to not just one but multiple independent
oracles, between which one is allowed to intersperse their own unitaries.

The work of [3] considers the simplest instance of this extension—two com-
muting, single-qubit oracles—showing that the necessary and sufficient conditions
under which a given multivariable polynomial transform is achievable are far from
obvious, and entangled with results in functional analysis and analytic geometry.

This talk centers on [3] but is steered by insights accumulated over the two
years since its publication. Here we briefly place this work in the context of a
larger research program on extensions to QSP/QSVT:

(a) Tethering circuit ansätze and function classes: The standard map
between QSP circuit parameterizations and polynomial transforms is de-
generate and awkward. Later work has removed unnecessary d.o.f’s, al-
lowing performant phase-finding algorithms. Do similar techniques extend
to the multivariable setting? More broadly, how are constraints on circuit
parameterizations taken to constraints on achieved polynomials?

(b) Novel constructive and non-constructive theorems for the exis-
tence of good circuit parameterizations: QSP ansatz specifications
rely on constructive, inductive proof methods to show the achieveability
of specific classes of polynomials.1 As such, modifying the ansatz, i.e.,
moving to the multivariable setting, requires overhauling the constructive
proof. Do there exist non-constructive methods to only indirectly show
density of ansätze in wider function classes?

(c) An algorithmic resource theory built around the block-encoding
data type: One way to interpret the incomplete results of [3] is that
a given multivariable polynomial transformation of block encodings may
require a certain ciruit depth, width, and query-complexity. With the ad-
vent of ‘generalized polynomial methods’ for matrix functions [18], can we

1While in practice QSP phases are found by iterative, optimization-based methods.
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provide tighter upper and lower bounds for general algebraic manipulation
of commuting/non-commuting block encodings?

It stands that ‘solutions’ to the problems raised by multivariable variants of QSP
can take multiple forms. Of greatest benefit would be a better understanding of
how precisely various näıve extensions of QSP fail, and more diverse techniques for
expressing structured products of unitaries. In this way, recent work on QSP as a
form of nonlinear Fourier analysis is exciting progress: useful analytic properties of
the QSP ansatz related to iterative phase-finding methods are connected to at-first-
glance un-physical properties of the analytic extension of the induced polynomial
transforms at infinity!

2. Main statements

Multivariable quantum signal processing (M-QSP) as introduced considered in
[3] allows the use (in any order) of two possible signal unitaries W (x1),W (x2):
rotations about a fixed axis on the Bloch sphere by different, unknown angles.
As such, while suppressing some underlying complexity discussed afterwards, M-
QSP’s characterization theorem looks superficially similar to that of standard QSP.

Theorem 1 (M-QSP in the Laurent picture). Let Φ = {ϕ0, . . . , ϕk} ∈ Rk+1 and
s = {s1, . . . , sk} ∈ {0, 1}k. Then the M-QSP unitary for (Φ, s) has form

UM-QSP(x1, x2; Φ, s) ≡ Φ[W (x1),W (x2)]

= eiϕ0σz

k∏
j=1

W (x1)
sjW (x2)

1−sjeiϕjσz =

(
P Q

−Q∗ P ∗

)
(1)

where W (x) = (1/2)(x + x−1)I + (1/2)(x − x−1)σx for (x1, x2) ∈ T2 iff P,Q ∈
C[x1, x2] are Laurent polynomials in x1 and x2 satisfying the following conditions:

(1) deg(P ) ≼ (m,n−m) and deg(Q) ≼ (m,n−m) with n = |s|, the Hamming
weight of s.

(2) P has even parity under (x1, x2) 7→ (x−1
1 , x−1

2 ) and Q has odd parity under
(x1, x2) 7→ (x−1

1 , x−1
2 ).

(3) P has parity m mod 2 under x1 7→ −x1 and parity (m − n) mod 2 under
x2 7→ −x2. Q has parity m mod 2 under x1 7→ −x1 and parity (m −
n) mod 2 under x2 7→ −x2.

(4) For all (x1, x2) ∈ T2, we have |P |2 + |Q|2 = 1.
(5) A statement of equivalent strength to the FRT = QSP condition,2 given in

[3], holds.

The difficulty in the above statement is the last condition, namely recovering
the inductive property that allows any M-QSP unitary to be written as the product
of two unitaries—one with the form W (xk)e

iϕjσz for some k, ϕj , and the other an
M-QSP unitary with strictly lower degree.

2A counterexample to the original conjecture has since been given in [4]. Think of this as
a statement guaranteeing that polynomials with unitary extensions permit, at each degree, the

inductive step required to iteratively compute QSP phases.
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The difficulty in M-QSP comes from two places: (1) ensuring that a given
polynomial as a matrix element can be suitably ‘completed’ and embedded in
a unitary satisfying the first four conditions of the theorem, and (2) ensuring
completions satisfying the first four conditions always permit decompositions into
products of oracles and σz-generated rotations.

Problem (1) can be answered, albeit opaquely, by appealing to multivariable
Fejér-Riesz theorems (FRTs) [19]; such theorems specify when positive (or non-
negative) multivariable trigonometric polynomials can be expressed as squares.3

Problem (2), however, originally left up to ‘FRT = QSP’ conjecture in [3], has
proven more obstinate; currently there is not even a non-trivial sufficient condition
for when such unitary completions permit factorizations into products of only
oracles and SU(2) rotations.

Against these difficulties, we can either (a) give more abilities to the computing
party in an attempt to broaden the set of achievable functions, or (b) provide
sufficient conditions such that a given polynomial function permits both (1) unitary
completion and (2) phase read-off automatically. Approaches toward this are more
specifically enumerated in Sec. 4.

3. A brief guide to related works

While [3] posed initial questions on multivariable QSP variants, a greater impact
of its publication manifests in companion papers which address its limitations,
examine extensions, and push the theory of QSP/QSVT in new directions. We
break these papers into categories for a new reader.

(a) Restricted and extended ansätze: Outside of the multivariable set-
ting, numerous works investigate modifications to the QSP circuit, either
by restricting the ansatz to improve numerical properties [14], investigat-
ing infinite-dimensional variants [13], or allowing larger gate sets to relax
certain parity requirements [10].

(b) Multivariable variants: Insightful papers have since followed [3] pro-
viding counterexamples to the conjecture provided [4, 5] (along with al-
ternative ansätze), as well as LCU-based variants using additional space
to achieve similar block encodings [8].

(c) General, modular block-encoding manipulation: By relaxing re-
source models, multivariable polynomials in block-encoded operators can
be achieved with incomparable complexities, e.g., through LCU-methods
[8] mentioned, or black-box composition of QSP-protocols (first described
in [11, 9]) or special supersets of the QSP ansatz (gadgets) [6].

(d) QSP and NLFA: Finally, recent works [16, 17] have recast QSP as a form
of nonlinear Fourier analysis, wherein suitably modified results from stan-
dard Fourier analysis can be recovered for group-valued functions which,
suitably discretized, allow clean proofs of convergence for iterative phase-
finding algorithms for wide classes (e.g., Szegö) of target polynomials.

3The statement of these theorems (and variants) is involved but, inspired by the univariate

case, require that a Toeplitz matrix of Fourier coefficients of the intended function has low rank.
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4. Discussion and open problems

Having reviewed some of the main statements of the original instantiation of M-
QSP, as well as works since published addressing, extending, or circumventing its
methods, we enumerate some open problems/promising avenues.

(a) Adding abilities to the computing party: To enable the recovery
of the inductive step used for finding M-QSP phases, we could permit
additional space, intervening measurement, disparate oracle types, etc.
We know LCU and QSP-based techniques can, with additional space and
query complexity, achieve arbitrary bounded multivariable matrix poly-
nomials. Can the required query complexity be lower bounded in terms of
desired function class?

(b) Identifying a restricted sub-class of achievable functions: just as
symmetrized QSP usefully restricts the class of achievable functions to
improve QSP’s numerical properties, we can imagine identifying a more
simply-describable, but non-trivial, subset of M-QSP-achievable functions.
We know that Chebyshev polynomials and certain algebraic relations among
these polynomials are achievable without additional space; can the dictio-
nary of permitted algebraic operations be diversified?

(c) Identifying new iterative phase-finding algorithms and noncon-
structive existence theorems: Work in QSP as nonlinear Fourier anal-
ysis, as well as symmetrized QSP in general, has yielded exciting algo-
rithms for QSP phase finding of new character, relying on solving struc-
tured linear systems. Do similarly well-performing algorithms exist in the
multivariable case, and do they suggest classes of functions in which a
given ansatz is dense?

Ultimately, in this author’s opinion, the unifying character of QSP/QSVT seems
less a statement of these algorithms generality, and more a suggestion that the
quantum algorithmist’s toolkit is narrow. The success of recent works rests on their
ability to systematically break QSP’s basic assumptions while still recovering QSP-
like guarantees, in turn building broad families of analytically well-understood
parameterized ansätze from well-understood techniques in functional analysis.
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QSP and NLFT

Miquel Saucedo

1. Connection between QSP and NLFT

1.1. Definition of QSP.

Proposition 1 (Pauli matrices and some of their properties). Set

X =

(
0 1
1 0

)
and Z =

(
1 0
0 −1

)
.

The following properties hold:

(1) The matrix

M = 2−
1
2

(
1 1
1 −1

)
diagonalizes X and satisfies M =M−1, that is,

MXM = Z.
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(2) For θ ∈ R,

eiθX =

(
cos θ i sin θ
i sin θ cos θ

)
and eiθZ =

(
eiθ 0
0 e−iθ

)
.

Let Ψ = (ψk)k∈N with ψk ∈ (−π
2 ,

π
2 ). We now define the QSP for Ψ.

Definition 2. Set x = cos(θ) with θ ∈ [0, π2 ] and define recursively the symmetric
QSP

(1) U0(Ψ, x) = eiψ0Z , Ud(Ψ, x) = eiψdZeiθXUd−1(Ψ, x)e
iθXeiψdZ .

The QSP of Ψ is the limit imaginary part of the upper-left entry of Ud as d→ ∞.

1.2. Definition of SU(2) NLFT and connection with QSP. First we re-
call the definition of NLFT. Let F = (Fn)n∈Z with Fn ∈ C and finite support
(extensions to larger spaces have been discussed in previous lectures).

Definition 3 (NLFT). Define recursively

Gk(z) = Gk−1(z)Tk(Fk, z)

with the initial condition G−∞ = I, and where

Tk(Fk, z) =
1√

1 + |Fk|2

(
1 Fkz

k

−Fkz−k 1

)
.

We write
︷︸︸︷
F = (a, b), where

G∞(z) =

(
a(z) b(z)

−b∗(z) a∗(z)

)
.

We now describe the connection between QSP and NLFT.

Theorem 4. Let F = (Fn)n∈Z = (i tanψ|n|)n∈Z. Set x = cos(θ) and z = e2iθ.
Then, for n ∈ N

Gn(F, z) = e−inθZMUn(Ψ, x)Me−inθZ .

Therefore
︷︸︸︷
F (z) = (a(z), b(z)) and , because of the symmetries of Fn,

b(z) = −b∗(z),

and

(a(z), b(z)) = (a∗(z−1),−b∗(z−1)).

Hence, b is purely imaginary, even and limn Im(Un(Ψ, x)1,1) = b(z).

Proof. Observe that

Tk(Fk, z) =

(
cosψk i sinψke

2kiθ

i sinψke
−2kiθ cosψk

)
= eikθZeiψkXe−ikθZ .
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Hence,

Gn(F, z) = e−inθZeiψnXeinθZ · · · e−i2θZeiψ2Xei2θZe−iθZeiψ1XeiθZ ×
× eiψ0XeiθZeiψ1Xe−iθZei2θZeiψ2Xe−i2θZ · · · einθZeiψnXe−inθZ

= e−inθZeiψnXeiθZ · · · eiψ0XeiθZeiψ1XeiθZeiψ2XeiθZ · · · eiθZeiψnXe−inθZ

= e−inθZMUd(Ψ, x)Me−inθZ .

□

Hence, the problem of finding angles which encode f becomes finding F such

that
︷︸︸︷
F = (a, b) for a given even, imaginary b and some a.

2. Given b, find NLF coefficients

Recall that, by previous lectures, given suitable (a, b) ( more precisely |a∗|2 +
|b|2 = 1 on T, a∗ ∈ H2(D), infz∈D |a∗(z)|2 > 1

2 and a∗(0) > 0) we can find the
NLF coefficients by applying layer-stripping to the Riemann Hilbert factorization.
The problem is now for a given b to find such an a.

2.1. Finding a from b.

Theorem 5. Let b be a measurable function on T with sup b2 < 1
2 . Then there ex-

ists an a∗ ∈ H2(D) such that a∗(0) > 0, |a∗|2+ |b|2 = 1 on T and infz∈D |a∗(z)|2 >
1
2 .

Proof. Let, for z ∈ T,

M(z) :=
1

2
log
(
1− |b(z)|2

)
.

Since M is real,

N(z) :=M(z) + iH(M)(z) ∼ M̂(0) +

∞∑
n=1

2M̂(n)zn ∈ L2(T)

where the Hilbert transform H(M) is also real. Thus, N can be extended to a
holomorphic function in the disc via the formula (equivalently by convolution with
the Poisson kernel )

N(reiθ) = Pr ∗N(θ) = M̂(0) +

∞∑
n=1

2M̂(n)(reiθ)n.

Set

a∗(z) = exp(N(z)),

it is a holomorphic function with radial limits at z ∈ T satisfying |a∗(z)|2 =

1− |b(z)|2 almost everywhere and a∗(0) = eM̂(0) > 0. It is outer because

log |a∗(reiθ)| = ReN(reiθ) = Pr ∗M(θ) = Pr ∗ log |a∗(θ)|.

Finally, by Jensen’s inequality, for any real λ,

|a∗(reiθ)|λ ≤ Pr ∗ |a∗(θ)|λ.
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Since on the boundary 1
2+ε ≤ |a∗|2 ≤ 1 , we have a∗ ∈ H2(D) and infz∈D |a∗(z)|2 >

1
2 .

□

Remark 6. We have

−1

2

∑
n∈Z

log
(
1 + tan2(ψ|n|)

)
= log(a∗(0)) =

1

2

∫
T
log
(
1− |b(θ)|2

)
dθ

=
1

π

∫ π

0

log
(
1− f(x)2

) dx√
1− x2

.

Hence the QSP of the truncated series converges in the∫ π

0

log
(
1− f(x)2

) dx√
1− x2

sense.

3. Summmary: how to find QSP angles

Given f : [0, 1] → R to find ψ: extend it to an even function, let b(z) = if(x)
with x = cos θ, θ ∈ [0, π] and z = e2iθ. Find the outer a as in Theorem 2.1. Let
F be the NLF coefficients of (a, b), since b is imaginary and even, Fn is even and
imaginary. The angles of the QSP are ψn = arctan(−iFn).
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Direct methods for finding QSP angles

Philipp Schleich

1. Existence of phase factors

The QSP theorem says that given a target polynomial f ∈ R[x] that satisfies
deg(f) = n, definite parity(f) = n mod 2, and ∥f∥∞ < 1, there exists a sequence
of phase factors Φ = (ϕ0, ϕ1, . . . , ϕn) ∈ [−π, π)n+1 so that

f(x) = g(x; Φ) := Re
(
⟨0|U(x; Φ)|0⟩

)
, x ∈ [−1; 1] with(1)

U(x; Φ) := eiϕ0Zei arccos(x)Xeiϕ1Zei arccos(x)X · · · eiϕn−1Zei arccos(x)XeiϕnZ(2)

≃
(

P (x) iQ(x)
√
1−x2

iQ∗(x)
√
1−x2 P∗(x)

)
, P,Q ∈ C[x].(3)

The proof of this result, i.e., the existence of such phase factors, is often done in a
constructive manner; e.g., [2, 1]. This means it naturally provides an algorithms to
find a set of phase factors. In the following, we motivate this. Instead of providing
the formal proof, we repeat the illustrative sketch from [3].
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It is convenient to think about the following liftings: t ∈ [−π, π] : f(t) :=
f(x = cos t), z ∈ U(1) : f(z = eit) := f(t). Throughout this report we will to the
variables x, t, z according to these definitions. Then, we can rewrite (3) as

(4)
(

P (x) iQ(x)
√
1−x2

iQ∗(x)
√
1−x2 P∗(x)

)
x 7→t≃

(
p(t) q(t)
q∗(t) p∗(t)

)
t7→z≃

(
p(z) q(z)
q∗(z) p∗(z)

)
.

Next, consider p(z), q(z) in the with deg(p) = n, deg(q) = n−1 in a monomial basis
as Laurent polynomials as p(z) =

∑
j pjz

j and q(z) =
∑
j qjz

j . This expansion is

equivalent to a Fourier decomposition in the t-variable, namely p(t) = pne
int+ . . .,

and similarly for q.
An initial choice is given by the ratio of leading coefficients e2iϕn = pn/qn−1.

Considering ( p(1)(z) q(1)(z) ) = ( p(z) q(z) ) e−iϕnZe−itX , the previous leading-order
term cancels and in ( p(1)(z) q(1)(z) ) is now the former n−1st, successively decreasing
the degree. Intuitively, we “split off” factors from the right in (2). Then, set
e2iϕn−1 = pn−1/qn−2, and so forth, until we arrive at ( p(n)(z) q(n)(z) ) to retrieve
ϕ0. There are some minor subtleties regarding even vs. odd degree at the least
iteration, which we will skip here and refer to [2].

While this construction seems quite straightforward, we do not a priori know
p(z), q(z), but only the target f = Re(p). Ref. [4] calls this the “completion” step,
and the above paragraph “decomposition”.

2. Factorization approaches: Finding complementary polynomials

Following the notation in [1, 3], we introduce the real Laurent polynomials

(5) a(z) = Re
(
p(z)

)
, b(z) = Re

(
q(z)

)
, c(z) = Im

(
p(z)

)
, d(z) = Im

(
q(z)

)
.

To successfully carry out the completion step of finding the QSP angles, we need
to find expressions for b(z), c(z), d(z), having only prior information about a(z).

This set of polynomials is constrained by normalization, a(z)2+ b(z)2+ c(z)2+
d(z)2 = 1, and parity. Factorizing the Laurent polynomial F (z) = 1 − a(z)2 −
b(z)2 = c(z)2 + d(z)2 is sufficient to fully determine a, b, c, d and thus find Φ.
Restricting to symmetric phase factors as done in [2] implies that b(z) = 0 and
Q ∈ R[x] in (3).

The polynomial F (z) has 2n roots (at most, for this talk let us assume there are)
taking into account multiplicity, and we know that they appear in pairs (rj , r

−1
j )

so that for each rj inside the unit disc, there is a r−1
j outside the unit disc. This

means we can write F (z) = α
∏2n
j=1(rj − z)(rj − z−1).

Then, we look at a factor of F (z) of the following form, e(z) := z−n
∏

|rj |<1(z−
rj) , with the goal to find a factorization so that all of the corresponding roots
come from within the unit disc. This allows us to define the “complementary
polynomials” b(z), c(z) via

(6) c(z) =
√
α e(z)+e(1/z)2 , d(z) =

√
α e(z)−e(1/z)2i , α = 1−a(z)2−b(z)2

e(z)e(1/z) > 0.
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2.1. Factorization via root-finding. The most straightforward way to con-
struct the complementary polynomials is applying a root-finding algorithm to
F (z), with complexity at most cubic in n [1, 4]. However, there is a draw-back that
such root-finding approaches of high-degree polynomials tend to be numerically un-
stable. The algorithm in [1] is stable only assuming high-precision arithmetic with
Ω(polyn log(n/ε)) bits of precision. The reason for this lies in the way that the
decomposition step is carried out: The leading order coefficients (in our notation
above that is pn, qn−1) are much smaller in norm compared to the lower-order ones
and high precision overall needed so that the numerical error remains bounded.
In comparison, [4] introduce a different way to approach the decomposition step
they call “halfing” that only requires usual machine precision.

2.2. Alternative factorization via Prony’s method. Ying [3] has proposed
an alternative way to factorize F (z) using Prony’s method. In order to apply
Prony’s method, we need to first make the following observation: The roots of
F (z) are the poles of its reciprocal, g(z) := 1

1−a(z)2−b(z)2 . Then it is possible to

identify the Fourier transform through a contour integral, with k a negative integer
and γ the counter-clockwise boundary of the unit disk,

(7) 1
2πi

∫
γ
g(z)
zk

dz
z = 1

2πi

∫ 2π

0
g(t)e−iktidt = 1

2π

∫ 2π

0
g(t)e−iktdt = ĝk.

This relies on g(z) being meromorphic and thus g(z) =
∑
rj

wj

rj−z + const.

Now, Prony’s method can be used on the Fourier coefficients ĝk in order to
recover e(z). To that end, consider the semi-infinite vector

ĝ− :=
(
ĝ−1, ĝ−1, · · ·

)T
=
(
−
∑

|rj |<1 wjr
0
j , −

∑
|rj |<1 wjr

1
j , · · ·

)T
.

Then, let S be a shift operator so that for any |rj | < 1, (S− rj)
(
r0j , r

1
j , ...

)T
= 0.

and we can carry this over to
∏

|rj |<1(S−rj)ĝ− = 0. To express g(z), the choice of

b(z) is a degree of freedom. Ref. [3] uses b(z) = bn sin(nt)+bn−2 sin((n− 2)t)+ . . .,
while the coefficients bj are chosen randomly. This guarantees that the roots of∏

|rj |<1(z−rj) are disjoint almost surely and deg(e(z)) = 2n. Further, we can write∏
|rj |<1(z− rj) = m(z) =

∑2n
j=0mjz

j . That means that
∏

|rj |<1(S− rj)ĝ− = 0 ⇔∑2n
j=0(S

j ĝ−)mj . This makes up a linear system of equations, where the coefficients

{mj}j describing the sought after polynomial are a non-trivial solution. Solving
form(z) implies we know e(z) = z−nm(z) and we can assemble the complementary
polynomials as outlined above. Although we started off with a semi-infinite ĝ−,
imposing a m(z) of fixed degree also fixes the size of the system.

Furthermore, [3] points out that for a numerically stable algorithm it is impor-
tant that the leading-order coefficient of b(z) is chosen to be much larger than the
lower-order ones to ensure the system has full numerical rank. A strength of this
algorithm compared to [1] seems that the issue of small leading-order coefficient
can be circumvented by a smart choice and thereby avoiding high-precision arith-
metics. Ref. [4] seem to be able to circumvent the stability issue by a modified
decomposition.
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3. Finding angles by optimization and maximal solution

An alternative to carry out factorization by decomposition and completion is to
formulate an optimization problem over symmetric QSP (i.e., b(z) = 0, Q ∈ R[x]
and Φ symmetric), namely

(8) Φ∗ = argminΦ
1
ñ

∑ñ
k=1 |g(xk,Φ)− f(xk)|2,

where {xk} are chosen to be the Chebychev nodes and ñ = ⌈(n+1)/2⌉ is the degree
of freedom after normalization and parity constraint. As for the factorization
approaches, the set of admissible factorizations and conversely the number of global
minimizers is not unique. However, [2] did find one solution that stands out,
which they call maximal solution. Namely, using a specific initial guess Φ0 =
(π4 , 0, · · · , 0,

π
4 ) of length n+ 1, they show that in a neighbourhood of this initial

point, there exists a global minimizer and the optimization landscape is strongly
convex assuming that ∥f∥∞ = O(1/n) for n = deg(f). In fact, this solution
cannot be found by unmodified earlier approaches such as [1] and similarly in [3]
as b(z) ̸= 0 by construction in the latter.
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Schur’s Algorithm for Bounded Holomorphic Functions

Alberto Takase

Let f : D(1) → D(1) be a function and assume f is holomorphic. Here D(1)
is the unit disk D(1) := {z ∈ C : |z| < 1}. Boyd [1] recalls that, by Schur’s
Algorithm (1918), given f there exist polynomials An, Qn such that An/Qn → f .
Boyd then announces an improvement that if ∥f∥∞ < 1, i.e., f : D(1) → D(1),
then there exist polynomials An, Qn such that An → a for some holomorphic
function a and Qn → q for some holomorphic function q, and f = a/q. This result
was discovered while generalizing Schur’s Algorithm to cases involving functions
with a finite number of poles; see the 40-page paper written in French by Chamfy
(1958) which Boyd cites.

Define

f0(z) := f(z) and γ0 := f0(0).

Observe |γ0| < 1. Indeed, ∥f∥∞ < 1. Define

fn+1(z) :=
fn(z)− γn

z(1− γnfn(z))
and γn := fn(0).
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Observe |γn| < 1 provided f is not of the form εzsQ(z−1)/Q(z), where Q is a
polynomial of degree s and ε is a constant with |ε| = 1. This nontrivial observation
is claimed by Boyd in his section 1.

Observe

f =
(A0 + zQ∗

0f1)

(Q0 + zA∗
0f1)

,

A∗
0(z) =: z0A0(z−1) = A0, Q∗

0(z) =: z0Q0(z−1) = Q0,

where A0, Q0 are polynomials of degree at most 0. Indeed, A0 = γ0 and Q0 = 1.
Observe

f =
(An + zQ∗

nfn+1)

(Qn + zA∗
nfn+1)

,

A∗
n(z) =: znAn(z−1), Q∗

n(z) =: znQn(z−1),

where An, Qn are polynomials of degree at most n. For example, A1 = γ0 + γ1z
and Q1 = 1 + γ0γ1z. For example, A2 = γ0 + (γ1 + γ0γ1γ2)z + γ2z

2 and Q2 =
1 + (γ0γ1 + γ1γ2)z + γ0γ2z

2. Furthermore,[
Qn An
A∗
n Q∗

n

]
=

[
1 γnz
γnz z

] [
Qn−1 An−1

A∗
n−1 Q∗

n−1

]
.

This nontrivial observation is claimed by Boyd in his section 1.
It follows that[

Qn zAn
A∗
n zQ∗

n

]
=

[
Qn An
A∗
n Q∗

n

] [
1 0
0 z

]
=

[
1 γnz
γn z

]
· · ·
[
1 γ0z
γ0 z

]
and

QnQ
∗
n −AnA

∗
n = ωnz

n, ωn =: (1− |γn|2) · · · (1− |γ0|2).
Observe

|An(z)| < |Qn(z)| on |z| = 1.

Indeed, 0 < ωn < 1 and QnQ
∗
n − AnA

∗
n = ωnz

n. Observe Qn has no zeros in
|z| < 1. Furthermore, given f =

∑
ukz

k,

An(z)

Qn(z)
= u0 + · · ·+ unz

n + sn+1z
n+1 + · · ·

and

|un+1 − sn+1| ≤ ωn.

This nontrivial observation is claimed in Section 1 of [1].
We now briefly summarize Section 2 and Section 3 of [1], which introduce a

notation and a lemma. Let g be a measurable function and assume log+ |g(eit)| is
integrable on [0, 2π). Let |z| < 1. Define the outer function

G(g; z) := exp

(
1

2π

∫
[0,2π]

eit + z

eit − z
log |g(eit)| dt

)
,
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G(g) := G(g; 0).

Here if log− |g(eit)| is not integrable, then G(g, z) ≡ 0. Boyd lists facts about the
outer function, but we forgo listing them here. The lemma is the following.

Lemma. Given f as above

ω(f) := lim
n→∞

ωn(f) = G(1− |f |2).

Furthermore, |f |∞ < 1 if and only if 0 < ω(f).
We now summarize Section 4 of [1], which states the theorem and provides a proof.

Theorem. Let f : D(1) → D(1) be a function and assume f is holomorphic.
If |f |∞ < 1, i.e., f : D(1) → D(1), then there exist polynomials An, Qn such
that An → a for some holomorphic function a and Qn → q for some holomorphic
function q and (i) q is an outer function with q(0) = 1 and (ii) f(z) = a(z)/q(z)
on D(1) and (iii) for almost all z with |z| = 1, |q(z)|2 − |a(z)|2 = ω(f) and (iv)
both A∗

n → 0 and Q∗
n → 0. Here the convergence is “uniformly on compact subsets

of D(1).”
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Nonlinear Fourier series for better than square summable

Mitchell Taylor

The content of this talk is based on Lecture 1 of [1].

1. Review of the (linear) Fourier transform

Before introducing the nonlinear Fourier transform, we set some conventions.

Given a sequence F = (Fn)n∈Z of complex numbers, the Fourier transform of
F is defined formally as:

F̂ (θ) =
∑
n∈Z

Fne
−2πiθn.

As is well-known, the Fourier inversion formula

Fn =

∫ 1

0

F̂ (θ)e2πiθndθ

yields a correspondence between F ∈ ℓ2(Z) and F̂ ∈ L2(T).1

1Here, we are identifying 1-periodic functions in θ with functions in the variable z ∈ T via

z = e−2πiθ.
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2. The (discrete) nonlinear Fourier transform

The discrete nonlinear Fourier transform acts on sequences F = (Fn)n∈Z, where
each Fn is in the unit disc D. The definition of this transform will be given in
stages. As a first step, we assume that F is a finitely supported sequence, so that
there exists N ∈ N such that Fn = 0 whenever |n| ≥ N .

For a complex parameter z, we consider the formal infinite recursion:

[
an bn

]
=

1√
1− |Fn|2

[
an−1 bn−1

] [ 1 Fnz
n

Fnz
−n 1

]
with the initialization

(1) a−∞ = 1, b−∞ = 0.

Note that by the assumption that (Fn)n∈Z is compactly supported, the transfer
matrix

1√
1− |Fn|2

[
1 Fnz

n

Fnz
−n 1

]
is the identity matrix when |n| is sufficiently large. For this reason, the initializa-
tion (1) can be interpreted as the condition that an = 1 and bn = 0 for sufficiently
negative n.

We define the nonlinear Fourier transform of the sequence F = (Fn)n∈Z as the
pair of functions (a∞, b∞) in the parameter z ∈ T, which is again well-defined by
the assumption that (Fn)n∈Z is compactly supported. We will use the notation︷︸︸︷

F (z) = (a∞(z), b∞(z))

to denote this function.

Remark: Note that
︷︸︸︷
F is a finite Laurent polynomial in z, so may be defined

everywhere on the complex plane except at the origin. However, we will view
the nonlinear Fourier transform as a function on the unit circle T, as this will be
necessary when we extend the definition of

︷︸︸︷
F to non-compactly supported F .

2.1. Interpretation as a map into a group. Recall that the group SU(1, 1)
consists of all complex matrices of the form[

a b

b a

]
which have determinant one. Note that for each z ∈ T, the transfer matrix is in
this group. Moreover, for z ∈ T, it is easy to see that the functions (an, bn) can
be equivalently defined via the recursion[

an bn
bn an

]
=

1√
1− |Fn|2

[
an−1 bn−1

bn−1 an−1

] [
1 Fnz

n

Fnz
−n 1

]
with [

a−∞ b−∞
b−∞ a−∞

]
=

[
1 0
0 1

]
.
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Hence, one may easily check that each matrix[
an bn
bn an

]
is in SU(1, 1); in particular, |an|2 = 1 + |bn|2 and we may consider the nonlinear
Fourier transform as a map

ℓ0(Z;D) → C(T;SU(1, 1)),

where ℓ0(Z;D) denotes the set of all finitely supported integer sequences with
values in the open unit disc D. We will abuse notation and write

(a, b)(c, d) = (ac+ bd, ad+ bc),

which is consistent with the group law.

2.2. Properties of the nonlinear Fourier transform. For small values of
Fn, the nonlinear Fourier transform can be approximated by the linear (inverse)
Fourier transform. Indeed, this can be seen by linearizing in F . By Taylor expan-
sion, we have (1− |Fn|2)−1/2 ≈ 1 for Fn small. Otherwise, the remaining formula
for (a∞, b∞) is polynomial in the variables F and F . Collecting only the constant
and linear terms, we have

(a∞, b∞) = (1,
∑
n∈Z

Fnz
n).

Thus, to leading order, a∞ = 1 and b∞ is the usual discrete Fourier transform.
The following theorem summarizes various properties of the nonlinear Fourier
transform. In it, for a function c defined on an open set E in the Riemann sphere,

we use the notation c∗(z) := c(z−1) which is defined on E∗ = {z : z−1 ∈ E}.

Theorem: The following properties hold.

(1) If Fn = 0 for n ̸= m, then︷︸︸︷
(Fn) = (1− |Fm|2)− 1

2 (1, Fmz
m).

(2) If
︷︸︸︷
(Fn) = (a, b), then for the shifted sequence with n-th entry Fn+1, we

have ︷ ︸︸ ︷
(Fn+1) = (a, bz−1).

(3) If the support of F is entirely to the left of the support of G, then︷ ︸︸ ︷
(F +G) =

︷︸︸︷
F
︷︸︸︷
G .

(4) If |c| = 1 then ︷ ︸︸ ︷
(cFn) = (a, cb).

(5) For the reflected sequence whose n-th entry is F−n, we have︷ ︸︸ ︷
(F−n)(z) = (a∗(z−1), b(z−1)).
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(6) For the complex conjugate sequence, we have︷ ︸︸ ︷
(Fn) = (a∗(z−1), b∗(z−1)).

(7) The nonlinear Fourier transform is a bijection from ℓ0(Z;D) into the space
of all pairs (a, b) with b an arbitrary Laurent polynomial and a the unique
Laurent polynomial satisfying aa∗ = 1+bb∗, a(∞) > 0, and a has no zeros
in D∗.

Remark: Observe that statements (2)-(6) are consistent with the linearization
a ∼ 1 and b ∼

∑
Fnz

n. Statement (7) is by far the most delicate to prove; it will
be relevant later for identifying the mapping properties of the nonlinear Fourier
transform on Hilbert spaces.

2.3. The definition of the nonlinear Fourier transform, summabel se-
quences. As with the classical Fourier transform, the extension of the nonlinear
Fourier transform to absolutely summable sequences is relatively straightforward.
To see this, we define a metric on the space SU(1, 1) by

dist(G,G′) = ∥G−G′∥op.
Since SU(1, 1) is closed in C4, SU(1, 1) is a complete metric space. We define
L∞(T;SU(1, 1)) to be the metric space of all essentially bounded functions G :
T → SU(1, 1) with distance

dist(G,G′) = sup
z

dist(G(z), G′(z)).

We also make ℓ1(Z;D) into a complete metric space by defining

dist(F, F ′) =
∑
n

∥Tn − T ′
n∥op,

where Tn and T ′
n are the associated transfer matrices. We first observe that for

every ϵ > 0, the above metric is bi-Lipschitz equivalent to the usual ℓ1 metric

dist′(F, F ′) =
∑
n

|Fn − F ′
n|

on Bϵ = {Fn : supn |Fn| < 1− ϵ} and ∪ϵ(Bϵ ∩ ℓ1(Z;D)) = ℓ1(Z;D). In particular,
finitely supported sequences will be dense in ℓ1(Z;D). With this in mind, we have
the following lemma.

Lemma: With the above metrics, the NLFT on ℓ0(Z;D) extends uniquely to
a locally Lipschitz map from ℓ1(Z;D) to L∞(T;SU(1, 1)). Moreover, the NLFT
of an ℓ1(Z;D) sequence can be written as the convergent infinite ordered product
of the transfer matrices.

The proof is an application of Trotter’s formula to obtain a Lipschitz estimate
on bounded sets for finite sequences together with a standard approximation ar-
gument.

Remark: By somewhat more sophisticated arguments, the NLFT can be ex-
tended to ℓp sequences in a rather explicit fashion when 1 ≤ p < 2. However,
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the extension to ℓ2 is more delicate as certain multilinear expansions in the above
definition of the NLFT will fail to converge. This will be discussed in the next
lecture.
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