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Young integral



Differential equation driven by rough signal
Consider the equation

dz; dX;

Rz (1)

We want to solve this equation
with input X; that is not differentiable.
Formally (1) can be written as

de_— = F(Zt) dXt-, (2)
or more precisely as

t
0

The integral above is a Riemann—Stieltjes integral:

t J
/()F(Zt)dXt: lim Y F(Zy ) (X - Xj-1).

0=to<-<ty=t
ltiy—t|—0 J=1



Fixed point argument

Existence and uniqueness of solutions are frequently proved
using the following iterative procedure.

Start with a guess Z(9 for the solution.

Given Z(K) let Y(K) .= F(Z(k), and

t
Z% ) = 7+ / y () 4x,.
0

This iteration should stay in some function space for it to be useful.
If X is continuous and has bounded variation:

J
VYX):= sup Z|th Xi,_, | < oo,

to< - <t_j

then one suitable space are bounded continuous functions
(if F is Lipschitz).



Bounded r-variation

We are interested in inputs X that are not of bounded variation
(e.g. sample paths of Brownian motion).

How should we measure their regularity?

Since our ODE is parametrization-invariant, it is natural to use
a parametrization-invariant space.

Definition
For 0 < r < oo the r-variation of a sequence (X;) is given by

r 1/r r
VI(X) = sup Z|Xn X oM (V1)

to<--<tg



Basic properties of bounded r-variation

Example

Bounded r-variation is a parametrization-invariant version
of 1/r-Holder continuity. Indeed, if X is defined on a bounded

interval [0, T] and |Xs — X¢| < Cls — t|1/r for all s, t, then

J
VI(X) < sup Z!C!t—tj 1\1/r!r)1/r
to<---<ty =1
< C sup Z|tj—tj 1|)1/r
to<---<ty =1
=CTY".

Lemma
VI(F o X) < |IF|[L;, V" (X).



Discrete version

To avoid technical difficulties, we consider a difference equation
that is a discrete analogue of our ODE:

Zj = Zj1 = F(Z1) (X = Xj-1)- (AE)
Setting Yj := F(Z;), we obtain

Z, =270+ Z 1(X; — X;_1).
0<j<J

We will ignore Zy and try to obtain estimates
for the map (X, Y) — Z given by

Zy= > YialX - Xi). (A1)
0<ji<J

All estimates should be independent of the number of j's,
so they can be transferred to the ODE.
The spaces should be invariant under composition with suitable F.



First paraproduct estimate

Lemma (E.R. Love and L.C. Young, 1936)
For r < 2 we have

| (1= Y0 - X0)| < CMVINVIX). (L)

0<j<J

The basic idea is that
S (Vo= Yo Xe) = S (Y- Yi)(X - Xio)
0<ji<J o<i<j<d

is a two-dimensional sum. But it can be much better
to arrange this sum in a different collection of rectangles:

X — X




Inductive splitting of the paraproduct

The new partition is chosen inductively. First, choose a small
square near the diagonal with the smallest contribution. After
removing this square, the remaining summation region has a similar
shape as before, but with J decreased by 1:




It remains to understand how small the contribution
of a small square near the diagonal can be.
Estimating the minimum by an average

and using Holder's inequality we obtain

inf [(Yie = Yi—1)(Xi41 — Xi)|

0<k<d
< (=107 D 0 = Vi) (Xern — X2
O0<k<d
SU-D()] Y- Yierl) Y ( D Xk — X"
0<k<J 0<k<J

< (J=1)2rvr(y)vr(X).

The hypothesis r < 2 is needed to ensure summability
of the coefficients (J — 1)72/7,

10



Mapping properties of the discrete Stieltjes integral

Corollary
Let Z; be given by (A1). Then for r < 2 we have

VI(Z) < (IIY ]l + GVI(Y))VI(X).

Proof: For any J < J' we have
Zr =2 =| 32 Ym0 = Xi)
J<j<y

= Yo =X0)+ YT (Y1 = YO0 = Xa)
J<j<)

<Y llolXs = Xol + G V(Y [4LIVIX 1, TD.
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Hence for any increasing sequence (J;) we have

1 r 1/r
Z‘ZJ/ 2 1’ / Z|YJ1 1 XJ/ Xy 1)| ) /
rZWf(v,[J/_l,JI]) VX, [, I
!

The first term is crealy bounded by || Y| V"(X).
In the second term we can actually bound the larger quantity

(Z\ VY Wi, IV X L, I

Z|v (Y, i, I Z|v CHVEN )R

< VI(Y)V(X).

12



Rough integral
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Controlled paths

We want a theory that works for X € V" with r > 2.

Definition

Let X, Y’ be functions with bounded r-variation.
We say that a function Y is controlled by X
with Gubinelli derivative Y’ if the error term

Rs,t = (Yt — Ys) — Ysl(Xt — X5)7 S S t,

has bounded r/2-variation in the sense that

Vr/2( = sup Z’RJ,J r/2 2/r < 0.

to<---<ty =1

The space of controlled paths turns out to be robust
under a version of (Al).
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Controlled paths have bounded r-variation

Lemma
If Y is controlled by X with Gubinelli derivative Y' and error term
R, then

VY < VPR 4| Y| VX

Proof.

Ve — Vel < [Rsel +Y{[1X: — X

Insert this into the definition of r-variation:

Vr( = sup Z‘Ytj Ytj 1‘ 1/r.

to<---<ty =1
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Composition of controlled paths with C? functions

Unlike bounded r-variation, controlled rough path property
is not preserved under composition with Lipschitz functions.
We need more regularity:

Lemma
If(Y,Y’) is controlled by X, then for every C? function F also
F oY is controlled by X, with Gubinelli derivative F'(Y)-Y'.

Proof

For s < t by Taylor's formula we have
F(Y:) — F(Ys) = F/(Ys)(Ye — Ys) + O((Ye — Y5)?).

Since Y is V', the second summand above is V'/2.
The first summand equals

FI(Ys) Yi(Xe = Xs) + F/(Ys)Rsye,

where R is the error term of rough path (Y, Y’).
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Proof continued.
Just seen: F'(Ys)Y! is a Gubinelli derivative.

It remains to check that it is V".
» Y'is V" by hypothesis.
» Since Y is a controlled path, itis V".

» Since F € C?, F' is Lipschitz, hence Fo Y is V",

» Product of V' paths Y/ and F' o Y is again V".
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Rough path

Want: define Z; := fot Y, dX; for controlled Y's

(and hope that the result will still be controlled).

If we can take Y =1, we should get Z = X.

Then we should be able to take Y = Z.

But there is no way to make sense of [ X dX if X is too irregular.
Solution: we postulate the value of this integral.

Definition (Lyons)

For 2 < r < 3, an r-rough path is a pair of functions (X, Xs ;)
such that V"(X) < oo, V/2(X) < oo, and Chen'’s relation

Xs,u = Xs,t + X1.‘,u + (Xt - Xs)(Xu - Xt) (Chen)
holds for all s <t < u.

» One should imagine (picture!)
Xoo'=" [F(Xwe = Xs) dXuw = [y AXu d X
» A rough path can be interpreted as a function of one variable.
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Why postulate the integral?

If (X;) is a discrete sequence, there is a canonical choice of X
that satisfies Chen'’s relation, namely

Xer = Y (Xjim1 — Xo)(Xj — Xj-1). (Aarea)

s<j<t

The quantitative content of the definition of rough path

is that we assume a bound on V"/?(X).

No such bound (independent of the length of the sequence)
can be deduced from a bound on V'(X) if r > 2.
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Modified Riemann sums

Given a rough parth (X, X) and a controlled path (Y, Y’),
we define modified Riemann sums for f Y,_dX, by

J

Z) = Z(Yj—l(xj — Xj-1) + Yf—lxj—l,j)- (A2)
j=1

Why does this modification work?

Consider Y = X, it is controlled by X with derivative Y’ = 1. By
Chen'’s relation

J+1

D2 (X106 = Xi1) + Xy

oy
= Xp_1(Xy = Xyo1) + Xy g+ Xg( X1 — Xo) + Xy 41

= Xm1(Xop1 = Xom1) + Xy, + Xy g1 + (X0 = Xg-1) (X1 — X))
= Xy—1(Xyp1 = Xy1) + X141

Hence (A2) telescopes to Xo(X; — Xp) + Xo .
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Estimate for modified Riemann sums

Lemma

Let 2 < r < 3. Let (X,X) be a rough path indexed by 0, ..., J,
and let Y be controlled by X with Gubinelli derivative Y’ and
remainder R. Then

J

‘Z((YJ*I = Yo)(Xj = Xj—1) + le—leflvj)‘
=1

SV PRRIVI(X) + VI(Y)VT(X) + | Yg|[Xo .

Induction base
In the case J =1 LHS equals Xg 1.
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Proof of estimate for modified Riemann sums
Inductive step: J — J+ 1. Wlog Yy = 0. For any 1 < k < J have

Do (Y10 = 1) + Vi)
J

= > (Yj—l(Xj — Xj1) + le—lxj—lJ)
je{kk+1}
+ Yi—1(Xe — Xi—1) + Y1 (Xie1 — Xie) + (Yie = Yie—1)(Xi1 — Xk)
+ Vi 1 X1k + Vi Xk + (Y — Yo )Xokt
= > <Yj—1(Xj = Xj-1) + Yj/—1Xj—1J>
je{kk+1}
+ Yic1( X1 — Xe—1) + Vi1 X161
+ (Y = Yie1)(Xirr — X)) = Vi1 (X = Xeo1) (Xiep1 — Xi)
+ (Y = Yie1)Xkokt1

last 2 lines = kal,k(XkJr]_ — Xk) + (Yli — Y,ﬁ_l)Xk,kH.
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Proof continued.
We choose k that minimizes the error term and estimate

. - D
1;nkng|Rk_1’k(Xk+1 Xi) + (Y = Yie1) Xk k1]

J
< (Jil ;mkl,k(xkﬂ — X))+ (Y5 — Y4_1)Xk,k+1!'/3>

< IV (SR 1k X0 7)
F I (0~ ViK'

< J*3/r(Z|Rk—1,klr/z)Z/r(Z\Xkﬂ - Xk\r)l/r
+ J_3/r<Z|Y/§ - V/i_1|r>1/r(Z|Xk,k+1lr/2>2/r

< J3TVI(RYVI(X) + STV (Y VTR (X).

The factors J=3/" are summable by hypothesis r < 3.

3/r

O
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Modified Riemann sums are again controlled

Theorem

Let 2 < r < 3 and let (X,X) be an r-rough path.
Suppose that (Y, Y") is controlled by X.

Then Z, given by (A2), is also controlled by X
with Gubinelli derivative Y .

Proof
For J < J' we have

Zr-2i= 3 (%l - X0+ Vaki)

J<j<J
+ > ((Yj—l =YX = Xj-1) + YJ-ClXj—lJ>
J<j<J

To see that Y is a Gubinelli derivative we need an ¢"/2 bound for
the latter sum.
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Proof continued.
By Lemma

> (G2 = Y0 = Xim) + Y aXja,)
J<j<J
S V2R, IDVI(X,[J, )]

+ V(YL IDVIPE LI+ 1Y ool X s -

This is £//2 summable over any sequence of disjoint intervals [J, J'].
Let us look for example at the first term.
For Jo < J1 < J» < --- consider the larger quantity

(V2R L 4V U D))

J

< (S (vP(R [ ) 2)Q/r(Z(Vf(x, D))

J J
< V'2(R)V(X). O

/r
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Sample paths of martingales
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Sample paths have bounded r-variation

Theorem (Lépingle, 1976)
Let X = (X;) be a martingale. For1 < p < oo and 2 < r we have

H thXth S CP,"HXHp'

» refines martingale maximal inequality: Mf < Xp + V! X;

» quantifies martingale convergence:
V' X; finite = X; converges

27



Tools from probability

Lemma

Let (Xn)n be a martingale and (7;); an increasing sequence
of stopping times. Then the sequence (X7,); is a martingale
with respect to the filtration (F7,);.

Recall
Fr={AecFo |AN{T <t} € F; forall t >0}
={Ac Fo |AN{r =t} € F; forall t > 0}.
Theorem (Martingale square function estimate/BDG)
Let (Xn)n be a martingale and
SX = (01X - X ).

j>1
Then for 1 < p < co we have

1sX1l, < IX]l,.

28



Proof of Lépingle's inequality
(2, i1, (Fn)n) filtered probability space,
(Xn)n adapted process with values in a metric space,
Ve = supyrcp<pn d(Xor, X ).
Stopping times with m € N:
™ =0, T = inf{t > 7™ | d(Xe, X ) > 27™V/10}.
J

oo oo
Claim:  (V'X) "< CY (27"VX) 2> d(X m). X m)*.
m=0 =1 o
Since V> < V', and assuming V" < oo, this implies

(VX)*<CH @M 2D d(X . X )
m=0 Jj=1 ’ -

If (Xn) is a martingale, then by optional sampling
also the sampled process (XT(m) )j is a martingale.
j

The red sum =:5(2m) is the square function of the sampled process,
hence by BDG inequality [|Sm)ll, < IX][, 1 < p < oo.

29



Proof of claim

o0

Claim:  (V'(X,)) < CY (27"V)"~ 2Zd

m=0
Let 0 < t' < t < 0o and m > 2. Suppose that

d( Xy, Xt)

2 < ———~ <4,
< 2-my =

It suffices to find j with t/ < Tj(m) < t and

d(Xt/,Xt) < 8d(XT‘(m),XT.(m)).

Jj—1 J

X(,,,).
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Enhanced martingales
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Rough paths in nilpotent groups
In order to apply the stopping time estimate,
we interpret a rough path (X, X) as a path in the 3-dimensional
Heisenberg group H =2 R3 with the group operation

(Xa}/7z) -(x',y’,z/) = (X+X/,y+y,,Z—|—Z/—|—Xy,).

by Setting Xt = (Xt7 Xt,X07t).
From Chen's relation for s < t we obtain

XXy = (X — Xo, Xt — X5, Xs 1)
With box norm on H:
103, v, 2)I| := max(|x], Iyl |z[*/?)
and the corresponding distance d(H, H') := ||[H™1H’|| we have
VIX 4 (VT2X)Y2 ~ VX,
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Square function of enhanced martingale
Let X be a martingale and X be given by (Aarea).

Theorem
Forl < p < oo and r > 2 we have

V72, < 1X),

The stopping time argument applied to X shows that it suffices to

bound -
3 X X
Jj Jj=1
in LP/2 where (77)j is an increasing sequence of stopping times.
Proposition

For every 1 < p < oo we have

o

2

1 X am g2 S IXI5-
j=1
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Paraproduct formulation

Proposition (diagonal case)

For 1 < p < oo and every increasing sequence of stopping times
(77) we have

o

2

1D XK a2 S IXIE
j=1

Proposition (off-diagonal case)

For every 1 < p1, p2 < oo and every increasing sequence of
stopping times (7;) we have

I N (P )y +1/m) S 15 1y 1158 Ly
i1

where Tls(f,g) = Z (fi-1 — fs)dgj, dgj=gj — gj—1-
s<j<t
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Tools from probability 2

Theorem (Reverse martingale square function/BDG)

If SX is the square function of a martingale X,
then for 1 < p < oo we have

X115 < 115Xl

Theorem (Martingale maximal inequality)
If (Xn)n is a martingale, then for 1 < p < oo we have

Isupl Xalll, < 11Xl
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Preliminary remarks

The paraproduct is given by

Mo = D, (for— fr )Xk — Xi1)

Tj—1<k<7;
= S0 - Xy,
k=1

where )
fk(J) = fkTJ — fkTFl = fk/\rj - fk/\Tj—l‘ (stopped)

Truncating the summation to k < K we obtain a martingale.
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Proof of the paraproduct estimate for p; = py = 2

o
1> 1Ml
j=1
[e.e]
= Mg amll
j=1

o0
S g [SMr_, ~ll; by reverse square function estimate
J=1

=B (IR PIX? - X2 )
j=1 k

<EY MNP - X2 )
j=1 k
< (B3 M) RS I) - X))

j=1 =1 k
J J 37



Proof of the paraproduct estimate continued

IEZI\/I (F0))2 1/2EZZ|XU) X9 212

j=1 k

- (ZHM(fU))H%)”(EZ\xk — X )2
j=1 k

< IR 28X,
j=1
= EYIFOP) 215X,
j=1
= [|Sf]l,[|SX]l,- O(p1 = p2=1)
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Tools from probability 3

Lemma (Vector-valued BDG inequality)

Let h(K) be martingales with respect to some fixed filtration.
Let 1 < q,r < oo. Then we have

HMh(k)HLq(EL) Sa.r HSh(k)HLq(fi).

This is different from vector-valued estimates in Martikainen's
lecture because

» the maximal function is inside the ¢" norm, and

» (1 is not UMD.

We postpone the proof and look at how this vector-valued
inequality is applied.
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Proof of the paraproduct estimate for 1/p; + 1/p, <1

||Z|n7'jflﬂ'j ‘ Hl/(l/p1+1/p2)
j=1

SIS SNl /(1/pit1/ps)  bY vector-valued BDG
j=1

S i) 121 v U ) 12y1/2
= IO PIXE = X1 2l 1 pon 1/

<IN MO STIXD = X112 o s1/0)
j:l k

SH(Z 2)12 ZZ\XU X ) 2 s 1))

j=1 j=1 k

e 1/2
=13 (mfD)2 5g”1/(1/p1+1/P2)
j=1
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Proof of the paraproduct estimate continued

1> ( Mri)2)* 5gH1/(1/p1+1/P2)
j=1

< H(Z(Mf“ )20 15 L,

j=1

= H(Z(Sf(’j))z)l/2le||5g||p2 by vector-valued BDG
=1
= 15F1l,, 151l 5, O(1/p1+1/p2 2 1)

We used BDG inequality with exponent 1/(1/p; + 1/pp) > 1
How to handle smaller p1, po?

For singular integrals one uses the Calder6n—Zygmund
decomposition.

The CZ decomposition uses the doulbing property of cubes in R”,

so we need a different decomposition for martingales.
41
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