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Motivation

Let L|K be a finite, totally ramified extension of complete discretely valued fields of characteristic (0, p) with
perfect residue field k. A smooth projective variety X over L comes with the following linear algebraic data.

• The crystalline cohomology groups of the special fibre Xk become K-vector spaces after inverting p.

• These carry a natural Frobenius action, compatibly with a fixed lift σ of the Frobenius of k to K.

• By comparison with the de Rham cohomology of X, they inherit a (Hodge) filtration over L.

Definition 1: Let isocK denote the category of F -isocrystals over K, that is, the category of pairs (V, ϕ),
where V ∈ vectK is a finite dimensional vector space over K, and ϕ : V ⊗K,σ K ∼−−→ V a σ-semilinear
automorphism of V . The category of filtered F -isocrystals over L|K is defined to be the fibre product

FilZL|K ×vectK isocK = FilZL×vectL isocK , (1)

where FilZL|K is the category of finite dimensional K-vector spaces together with a Z-filtration over L.

In fact, the p-adic analogue of a period domain over C, parametrizing Hodge structures, is a moduli space
for semistable filtered F -isocrystals over K, cf. Definition 2. They form an abelian subcategory of (1),
which Colmez and Fontaine describe in terms of certain representations of the absolute Galois group,

repcris
K (GL) ∼−−→ (FilZL×vectL isocK)ss

0 .

The cohomology of p-adic period domains is studied in [2]. A similar strategy is pursued in various settings.

• Originally, by Harder and Narasimhan, in the context of moduli spaces of vector bundles on curves.

• Reineke [5] counts Fq-points of quiver moduli spaces in order to infer their Betti numbers (over C).

• Joyce [4] refines this point count to motivic measures of more general moduli spaces, over any field K.

Our goal is to generalize this approach to accommodate for the equivariant setting of [2]. Consider three
quasi-abelian K-linear categories E , B, and D, and assume that B and D are semisimple. Let

E ω−−→ B ν←−− D

be two K-linear exact isofibrations. Then for a field extension L|K, we replace (1) by the fibre product

(EL ×BL B)×B D = EL ×BL D, where EL := E ⊗K L. (2)

Example 1: (a) For a quiver Q, the fibre functor repB(Q)→ B, M 7→
⊕

i∈Q0
Mi, is an exact isofibration.

(b) Similarly, this applies to the forgetful functor on the category of representations in B of a group G.
By arguing pointwise, this extends to (pro-)group schemes over K. In fact, it follows that

FilZK
ω−−→ vectK

ν←−− isocK ,

and indeed, the fibre functor of a quasi-Tannakian category over K is an exact K-linear isofibration.

(c) In the same vein, this works for the functor ω : FilΛB → B, where Λ is a totally ordered abelian group.

Slope filtrations and Hall algebras

It is explained in [1] how to express the aforementioned notions of semistability in our categorical setting.

Definition 2: Let E' denote the maximal subgroupoid. Suppose E is equipped with two maps as follows.

• The rank function rk : π0(E')→ N, additive on exact sequences, such that rk(E) = 0⇔ E = 0.

• A degree function deg : K0(E)→ Λ, with deg(E) ≤ deg(E ′) for all E → E ′ with (co-)kernel = 0.

Then E is semistable if µ(N) ≤ µ(E) for all 0 6= N ≤ E, where µ(E) = degE
rkE
∈ ΛQ is the slope of E.

The full subcategory E ss
λ of semistable objects of E of slope ∈ {λ,∞} is inherently abelian.

Example 2: (a) For the category E of vector bundles on a (connected) smooth projective curve X over
the field K, we have the usual notions of rank and degree. Note that OX � OX(1) has (co-)kernel = 0.

(b) Let Q be a (connected) quiver, and E = repK(Q). Then rk(M) :=
∑

i∈Q0
dimK(Mi) for M ∈ E , and

any choice of θ ∈ ΛQ0 defines a degree function via degθ : K0(E)
dim−−−→ Z⊕Q0

θ−→ Λ.

(c) Let E = FilΛL|K with rank function rk(V, F •) = dimK(V ). The degree is weighted by the jumps of F •,

deg•(V, F
•) =

∑
λ∈Λ

λ · dimL(F λV/F λ−1V ) ∈ Λ.

On isocK , define degσ(V, ϕ) := − valp(detϕ). The fibre product in (1) is endowed with deg := deg•+ degσ.

Several further examples appear in the survey article [1], where the following is proved in this generality.

Proposition 1: There is a unique filtration F • : Λop
Q × E → E, such that 0 ( F λ1E ( . . . ( F λnE = E,

for E ∈ E, is uniquely determined by F λiE/F λi−1E being semistable of decreasing slopes λ1 > . . . > λn.

If K = Fq and E is finitary, we can express Proposition 1 as an equation in the Hall algebra of E . This is
the convolution algebra H(E) = Q[π0(E')] of finitely supported Q-valued functions on π0(E'), that is,

(f ∗ g)(E) =
∑
N≤E

f(N)g(E/N), for f, g ∈ Q[π0(E')].

More precisely, if we complete H(E) with respect to its K0(E)-grading, where 1E lies in degree [E], then

1π0(E') =
∑

λ1>...>λn

1π0(Ess'λ1 ) ∗ . . . ∗ 1π0(Ess'λn ) ∈ Ĥ(E). (3)

If E is hereditary, the Euler form χ(M,N) = dim Hom(M,N) − dim Ext1(M,N) defines a twisted group
ring Q〈χ〉[K0(E)], with [M ][N ] = q−χ(N,M)[N ⊕M ]. By [5], Lemma 6.1, there is an integration morphism∫

E
: Ĥ(E) −→ Q〈χ〉[[K0(E)]], 1E 7−→ 1

# Aut(E)
[E]. (4)

Integrating (3) yields a formula (5), counting points of the moduli stack of objectsMα of class α ∈ K0(E).

Equivariant motivic Hall algebras

Over an arbitrary field K, the idea is to replace the number of points q = #A1(Fq) by the affine line itself.
To this end, we understand it as an element L = [A1

K ] ∈ K0(Var/K) of the Grothendieck ring of varieties.

Definition 3: Let Z be a stack in groupoids on the big fppf-site Aff fppf
K of affine schemes over K. Then

the (relative) Grothendieck ring of stacks K0(Sta/Z) is the free Z-module on geometric equivalence
classes of algebraic stacks over Z, of finite type and with affine stabilizers over K, modulo the relations

[Xq X′] = [X] + [X′],

[X1] = [X2] for all locally trivial Zariski fibrations Xi → X0 with equivalent fibres.

This ensures that K0(Var/K)[L−1, (Ln − 1)−1 | n ∈ N] ∼−−→ K0(Sta/K). As above, there is a HN-recursion

[Mα] =
∑

α1>...>αn
α1+...+αn=α

L−
∑
i<j χ(αj ,αi)[Mss

α1
] · · · [Mss

αn ] ∈ K0(Sta/K). (5)

This makes sense, assuming dimK HomE(−,−) <∞, by the following finiteness result.

Theorem 1: Let − ⊗̂K − denote the K-linear Cauchy completion of the tensor product. The functor

M : Aff fppf
K −→ Grpd, Spec(A) 7−→ (E ⊗̂K A)',

defines an algebraic stack, locally of finite type over K, called the moduli stack of objects of E.

The motivic Hall algebra H(E) := K0(Sta/M) of E is the convolution algebra along the correspondence

M×KM
(∂2,∂0)←−−−− S2(E)

∂1−−−→M, (6)

where S2(E) is the moduli stack of short exact sequences in E , which are mapped in (6) to their outer terms
and their middle term, respectively. That is, multiplication in H(E) is defined as the composition

K0(Sta/M)⊗K0(Sta/M)
−×K−−−−−→ K0(Sta/M×KM)

(∂2,∂0)∗−−−−→ K0(Sta/S2(E))
(∂1)∗−−−→ K0(Sta/M).

Let N be the moduli stack of B. By replacing K0(Sta/−) by its D-equivariant variant KD0 (Sta/−), we get

[M×N D'] ∈ ĤD(E), where HD(E) = KD0 (Sta/M) ∼=
⊕

D∈π0(D')

K
Aut(D)
0 (Sta/M),

the equivariant motivic Hall algebra of E , with parabolic induction product between the summands.

Theorem 2: There is a natural map of simplicial stacks S(E)→ K0(S•(E)), whose pushforward∫ D
E

: ĤD(E) −→ KD0 (Sta/K)〈χ〉[[K0(E)]]

is an algebra morphism if E is hereditary. For D = 0, this recovers the motivic version of (4) in [4].

Further directions

If E carries a duality structure, there is a module over the Hall algebra of E on isometry classes of selfdual
objects, due to M. Young. We have an analogue of Theorem 2 for the equivariant motivic Hall module.
In general, we replace KD0 (Sta/−) with a ring of analytic stacks (on affinoid spaces) over a non-Archimedean
field. This again yields a Hall algebra, since Waldhausen’s S-construction defines a 2-Segal stack (cf. [3]).

Definition 4: Let k ≥ 0. The n-cells S
〈k〉
n (E) of the higher Waldhausen S-construction are defined

as the full subcategory of the category of diagrams E : Fun([k], [n]) −→ E , (β : [k]→ [n]) 7−→ Eβ, with

• (degeneracies) for every functor α : [k − 1]→ [n], we have Es∗k−1α
= . . . = Es∗0α = 0, and

• (faces) for every γ : [k + 1]→ [n], the sequence Ed∗k+1γ
↪−→ Ed∗kγ −→ . . . −→ Ed∗1γ −� Ed∗0γ is exact.

Hesselholt and Madsen introduced S
〈2〉
• (E) in the context of real algebraic K-theory. We illustrate an element

of its 4-skeleton, with image under the upper 3-Segal map u : S
〈2〉
4 (E) −→ S

〈2〉
3 (E)×

S
〈2〉
2 (E)

S
〈2〉
3 (E) in red.
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If E is abelian, u is an equivalence, but this case is an outlier; the general result is as follows.

Theorem 3: The simplicial category S
〈k〉
• (E) is a 2k-Segal object.
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