The Language of Proofs

Peter Koepke, University of Bonn

Proof theory treats mathematical proofs as formal proofs which proceed by syntactic manipulations of sequences of symbols. To the human reader
proofs rather appear as tales about numbers, figures and other mathematical objects. We discuss whether standard linguistic techniques for the under-
standing of simple discourse are able to generate formal proofs from natural language proofs. This work may lead to natural interfaces for proof-checkers
and provers and to a better understanding of the natural language and logic used in mathematical discourse. See also http://www.math.uni-
bonn.de/people/naproche

Trimestre on Methods of Proof Theory in Mathematics
Max-Planck-Institut for Mathematics, Bonn, March 22, 2007

unive rsitétbonnl

Contents

- Proofs in natural language

- The curt system

- Mathematical language

- Naproche: Natural language proof checking
- Details

- TEXanacs

- Examples and demonstration

- Experiences, further plans, applications

Proofs in natural language

Every man is mortal.
Socrates is a man.

Socrates is mortal.

Aristotelean syllogism (Barbara).

Proofs in computer linguistics
Blackburn, Bos: Representation and Inference for Natural Language
Implementations: curt (clever use of reasoning tools)

(demo of sensitiveCurt)

Structure of the curt system:
Input text (“Every man dies”)
] Parser, Tokenizer (readline.pl)
Tokenized format ([all, man, diel)
1 NLP (natural language processing)
Internal representation (...)
l
First-order logic format (all1(A, imp(man(A), die(A))))
1 (fol2otter.pl, fol2mace.pl)

Input format for theorem prover Otter / model builder Mace (...)

More curt examples

“Natural language”

Every man that hates Mia hates Butch.

Marsellus is a man and hates Mia.
Marsellus hates Butch.

Mia: proper name
man: noun
hates: transitive verb

“Mathematics”

Every number that divides 10 divides 20
5 is a number and divides 10.
5 divides 20.

10: constant
is a number: unary relation
divides: binary relation

The language of mathematics I
— combination of natural language and “mathematical formulas”
— specific, defined words and figures of speech
— hypothetical constructions (“assume”; “define”, “let”, ...)
— definitions, theorems, proofs
— typography (a,ﬁ,...,%,\/_,)

— graphics (diagrams, pictures, ...)

The language of mathematics II
— very concise, partially incomplete
— relying on implicit assumptions, intuitions, traditions, ...
— but: a proper mathematical text has, in principle, a definite
meaning which can be expressed formally (in first-order

logic and Zermelo-Fraenkel set theory).

— this may help with problems of ambiguity in
mathematical texts

Linguistic studies of mathematical language

some normative texts: D. Knuth et al: Mathematical writing, 1988;
L. Lamport: How to write proofs, 1993; ...

natural language at man/machine interfaces: P. Abrahams: Machine
verification of mathematical proofs, 1963; ...

checking natural mathematical language: D. Simon: Checking natural
language proofs, 1988, and Checking number theory proofs in natural

language, 1990; C. Zinn: Understanding informal mathematical
discourse, 2004

B. Lowe, B. Schréder, Thetic Phrases in Semi-Formal
Usage

ProofML - annotating mathematical proofs (B. Fisseni, B. Schroder, ..

)

A “mathematical Curt”

Input text (“Every man dies”)

] Parser, Tokenizer (readline.pl)
Tokenized format ([all, man, diel)

1 NLP (natural language processing)
Internal representation (...)

!
FOL format (all(A,imp(man(A),die(A))))

1 (fol2otter.pl, fol2mace.pl)

Input format for theorem prover / model builder

Typeset mathematical text
T TeXuacs
IATEX-style format / XML format
] Parser, Tokenizer (readline.pl)
Tokenized format
1 NLP adapted to mathematical discourse
Internal representation with discourse representation structures
!
First-order logic format
1 (fol2otter.pl)

Input format for theorem prover Otter, ...

10

The Naproche project (Natural language proof checking)

M. Carl, B. Fisseni, M. Klein, P. Koepke, N. Kolev, Th. Raésch,
B. Schroder, J. Veldman

www.math.uni-bonn.de/people/

Typeset mathematical text
I TEXuacs
adapted XML format
] Parser, Tokenizer (readline.pl)
Tokenized format
1 NLP adapted to mathematical discourse
Internal representation with discourse representation structures

!

First-order logic format
1 (fol2otter.pl)
Input format for theorem prover Otter

I Otter

accepted / not accepted

11

... From a linguistic perspective, the Language of Mathematics is distinguished by the fact that its
core mathematical meaning can be fully captured by an intelligent translation into first-order predi-
cate logic. ...

The ... project NAPROCHE aims at constructing a system which accepts a controlled but rich
subset of ordinary mathematical language including TeX-style typeset formulas and transforms
them into formal statements. We adapt linguistic techniques to allow for common grammatical con-
structs and to extract mathematically relevant implicit information about hypotheses and conclu-
sions. Combined with proof checking software we obtain NAtural language PROof CHEckers which
are prototypically used ... to teach mathematical proving.

12

Prover / proof checker
— proof checking: e.g. MIZAR, home-grown Prolog checker

— proof checking = proving every statement from available
premises and methods, with e.g. Otter, Bliksem

— Problem: how to determine the available premises
— explicit declaration of premises: By Theorem 5.7 ...

— underspecified declarations which can resolved in
context: By tnduction hypothesis ...

— closely preceding statements

— Solution (7): define a metric between statement in text and
background knowledge, use premises with small distance

13

Discourse representation structures (DRS)

— describing the semantics of sequences of sentences,
i.e., discourse (H. Kamp: A theory of truth and semantic
representation, 1981)

— dealing with quantifiers (universal, existential, scope) and
anaphora (pronouns, ...): Define a function f: A— B. This
function satisfies ...

— graphical presentation of DRS: variables and properties of
variables

14

Example (curtPPDRT)
> Mia dances.

> interpretations

| mia(x2) |
| dance(x1) |
| agent(x1,x2) |
| event(x1) |

15

Example (curtPPDRT)
> Every man dances.

> interpretations

| | x1 | | x2 |
I | | |
	man(x1)	==>	dance(x2)
	__		agent(x2,x1)
	event (x2)		

16

Formal Grammar: XML —> DRS semantics

— as in Blackburn-Bos, with mathematical
features added

17

NLP: Semantics of simple natural language

“Fido chases every cat”

S: all(Y,cat(Y),chases(fido,Y))

_— /

NP: fido VP: all(Y,cat(Y),chases(X,Y))

N

| V: chases(X,)Y) NP: all(Y,cat(Y),...)

| | D: all(...,...,...) N: cat(Y)

Fido chases every cat.

18

NLP: Semantics of simple mathematical language

“1 divides every integer.”

S: all(Y,integer(Y),divides(1,Y))

_— /.

NP: 1 VP: all(Y,integer(Y),divides(X,Y))

| V:divides(X,)Y) NP: all(Y,integer(Y),...)

| AN

| | D: all(...,...,...) N: integer(Y)

1 divides every integer.

ie,VyeZl|y

19

The mathematical text editor TEXy1acq
— WYSIWYG IATEX-quality text editor
— uses the TEX and IATEX algorithms and font handling
— Joris van der Hoeven 1999 -
— WwWw.texmacs.org

— extendable system with scheme/guile as extension
language

— can export to XML / MATHML

— can be used as an interface to other programs and
for Naproche

20

Theorem. (—pV ¥)— (¢ —).
Proof.

Let (o V).

Let —p. Let ¢. Contradiction. 1. Thus ¢ — . Thus —p— (¢ — ¥).
Let ¥. Let ¢. 1. Thus p— 1. Thus ¢ — (o — 1)),

p— 1. Thus (mp V1)) = (o —).

Qed.

Internal representation (.tm file)

<TeXmacs|1.0.6>
<stylelgeneric>
<\body>
Example:
<\quotation>
Theorem. <with|mode|math| (\<neg\>\<varphi\>\<vee\>\<psi\>)\<rightarrow\>
(\<varphi\>\<rightarrow\>\<psi\>)>.\
Proof.
Let <with|mode|math| (\<neg\>\<varphi\>\<vee\>\<psi\>)>.
Let <with|mode|math|\<neg\>\<varphi\>>. Let <with|mode|math|\<varphi\>>.
Contradiction. <with|mode|math|\<psi\>>. Thus
<with|mode|math|\<varphi\>\<rightarrow\>\<psi\>>. Thus
<with|mode|math|\<neg\>\<varphi\>\<rightarrow\>(\<varphi\>\<rightarrow\>\<psi\>)>.

21

A weak Naproche prototype

— TEXyes + all other layers implemented in
home-grown PROLOG

— simple keyword language
— Theorem / Proof / Qed construct
— no explicit references to assumptions and lemmas

— only simple proof rules

22

Example de Morgan:

Theorem. a A f— —(—a V= [3).

Proof. Assume a A 3. Assume for a contradiction that —a vV —f3. Assume —a. a.
Contradiction. Thus —a— L.

Assume - (3. (. Contradiction. Thus -G — L.

Hence contradiction. Thus —(—a VvV —3). Thus a A §— =(—-a V= 3).
Qed.

23

Example strict partial orders:
Let < be a partial order, and let < be the associated strict relation:

Let VaVyVz(e <yAy<z—x < 2).
Let Vxz < x.

Let VaVy(r <yAy<z—x=1).
Define VzVy (z <y—z<yA-x=y).

A Naproche proof of the transitivity of <:

Theorem. VaVyVz(z<yAy<z—x<z).
Proof. Let z <y and y <z. Then x <y. x <y A—xz=y. In particular x < y.
Also y<z. Then y<zand ~y==z. y<z. r<yand y<z. x< 2.

Assume for a contradiction that x = 2. Then z =2. y <z. Hence x < y and y <x. Hence x =y. But -z =y. Con-
tradiction. Thus —x = z. Hence x <z and -2 = z. Hence z < z.

Thus VaVyVz (z<yAy<z—x<z). Qed.

24

Example ordinals:
We make some set theoretic assumptions. The empty set () is characterized by:

Assume that —3Jzx € 0.

Assume that for all z not x € z.
We define ordinals according to JOHN VON NEUMANN:

Define for all z (Trans(z) if and only if YuVv(u€vAvEx—u€x)).

Define for all z (z is an ordinal iff Trans(z) A Vy(y € x — Trans(y))).
We prove some basic facts about ordinals.

Theorem. () is an ordinal.

Proof. Consider u €v and v €(). Then v €. Jzz € (). Contradiction. Then u €). Thus VuVv(u€vAveD —uel).
Hence Trans(().

Consider y €). Then Jzx € (). Contradiction. Then Trans(y). Thus Vy(y €) — Trans(y)).
Hence Trans(()) and Yy (y €) — Trans(y)). Qed.

25

The next theorem shows that the class Ord of all ordinals is transitive:

Theorem. For all y for all z (z € y and y is an ordinal implies x is an ordinal).

Proof. Consider « € y and y is an ordinal. Then Ord(y). Trans(y) and Vz(z € y — Trans(z)). In particular Vz(z €
y— Trans(z)). Observe that x € y. Hence Trans(z).

Consider u € z. Trans(y). So VuVv(u € v Av € y—u € y). Observe that u € x and = € y. Hence u € y. Recall that
Vz(z € y— Trans(z)). Hence Trans(u). Thus Vu(u € x — Trans(u)).

Together we have Trans(x) and Vu(u € z — Trans(u)). Hence x is an ordinal. Thus for all y for all x (x € y and y is
an ordinal implies x is an ordinal). Qed.

The BURALI-FORTI paradoxon: the class Ord of all ordinals is not a set:

Theorem. Not there is = such that Yu(u € z < Ord(u)).
Proof. Assume for a contradiction that there is x such that Yu(u € <« Ord(u)). Assume Vu(u € x <> Ord(u)).
Lemma. Ord(x).

Proof. Let w € v and v € x. Then u €v. v €x. Ord(v). Together we have u € v and Ord(v). So Ord(u). u € x. Thus
VuVv(u€vAver—uex). Hence Trans(z).

Consider y € z. Then Ord(y). Trans(y) A Vz(z € y — Trans(z)). In particular Trans(y). Thus Vy(y € z — Trans(y)).
Together we have Trans(z) A Vy(y € x — Trans(y)). Hence x is an ordinal. Qed.

Then = € . But —x € z. Contradiction. Thus contradiction. Thus not there is x such that Vu(u € x < Ord(u)).

Qed.

26

Experiences

— the prototype Naproche defines a controlled language with
“rather natural” features (in very restricted domains)

— it has been experimentally used in a first-year undergraduate
course Mathematics for computer scientists

— the PROLOG proof checker tries to apply every rule to
all possible premises, leading to inefficiency

— introducing terms and substitutions lead to intolerable
complexities

27

Further aspects of Naproche formalizations
— set theoretic approach: formulas and abstraction
terms {x |y }; efficient handling of terms using
"lazy expansions”

— what would be a good axiomatic basis for this?

— implementing common figures of argumentation like
“for all ¢« € I choose a; such that ...

— a set orientated internal language representation would
automatically take care of many tautologies: represent

NP by {A, 0,0} then pAY = YAy

28

Possible applications

— formalization of basic domains:
”Logic for man and machines”

— tutorial applications
— natural language interfaces to provers and proof checkers
— linguistics

— distinguishing explicit and implicit knowledge in
mathematical practice

29

