The NAPROCHE Project

Linguistics and logic of common mathematical language I

Peter Koepke and Merlin Carl, Mathematical Institute
Universitat Bonn

unive rsitétbonnl

Mathematical texts are formulated in a semi-formal language, mixing natural language discourse
and mathematical formulas. The meaning of a mathematical text can be described by a transla-
tion into first-order formulas; the text is correct if its first-order translation is a formal proof in
a first-order proof calculus. The NAPROCHE project (NAtural language PROof CHEcking)
recognizes that there is a specific, semi-formal or natural mathematical language which ought to
be studied by linguistic techniques. The project aims at constructing a system which checks the
correctness of texts written in a controlled but rich sublanguage of ordinary mathematical lan-
guage including TEX-style typeset formulas. In our talk we demonstrate a small working proto-
type, explain its modular structure, and discuss future enhancements and extensions, with an
emphasis on the mathematical aspects of the system and its applications.

http://www.math.uni-bonn.de/people/naproche/
Workshop Deduction in Semantics

Institut fiir Maschinelle Sprachverarbeitung,
Stuttgart, October 11, 2007

The language of mathematics, example

Fuclid:

PROPOSITIO XXXII.
PAR§ I.

Fig. 51, OMm.r tmngul: externns quivisangnins (FBC)

dmobnus internis oppofitis (A C) equalis off.
(f) zer 31, Per B duc (f) BL parallclam ad AC. Quia duas
lelas BL, AC fecat F A, erit externus angulus FBL i mtcmo
(s) rer2y. A (g) zqualis. Et quia eafdem parallelas BL. AC fecat
. ctiam re&a BC, erit LBC fibi alterno C () zqualis. Elg)

(")'”' ¢and-'totus FBC 2quatur utrique fimul A & C, Quod crat
monftrindum,

Corollaria.

Iig. 51. x,EXtcmus angulus (FBC) quolibct internorum oppofito-
rum A vel C, major eft,
Fig. 33, 7 _ > Angulorum (" AQB) candem biim AB) haben-
%32 zz‘zmm, major cft’ (AOB,) Q.g) tra Cadlt- (™
- N) 0\.

[}

The language of mathematics, example

Gauss:

10 DE NUMERORUM CONGRUENTIA

Numerorum congruentiam hoc signo, =, in posterum denotabimus, modulum
ubi opus erit in clausulis adiungentes, —16=9 (mod.5,. —7=15 mod. 11)* .

3.
TrEOREMA. Propositis m numeris integris successivis
a, a+1,a+2 a+m—1
alioque A, illorum aliquis huic secundum modulum m congruus erit, et quidem unicus
tantum.

Sienim a—_mﬁ integer, erit a=4, sinfractus, sit integer proxime maior, ;aut
quando est negativus, proxime minor, si ad signum non respiciatur, ==#, cadetque
A-+km inter a et a-m, quare erit numerus quaesitus. Et manifestum est om-

a—A a+1—A a+2—

. A . TP
nes quotientes —=, ——, - etc. inter A—1 et A1 sitosesse; quare

plures quam unus integri esse nequeunt.

Residua minimna.

1.
Quisque igitur numerus residuum habebit tum in hac serie, 0,1,2,...m—1,
tum in hac, 0, —1, —2,—/m—1), quae residua minima dicemus, patetque,

nisi 0 foerit residnim hina cemner dari nasitioum alternm alternm neaatinum

The language of mathematics, example

This example, de Morgan’s law, could be a basic exercise in
an introductory logic course; the solution is readable (by
humans) and is also accepted by the NAPROCHE proof
checking system. This indicates that the distance between
natural proofs and formal proofs may be reduced or even
eliminated.

Theorem. aA (> =(—aV —=0).

Proof. Assume a A (3. Assume for a contradiction that —
aV-g.

Assume —a. a. Contradiction. Thus —a— L.

Assume —(3. 3. Contradiction. Thus - — L.

Hence contradiction. Thus —=(—«a V =3). Thus a A § — —(—
aV-f3).

Assume —(—a V —3). Assume —a. -« V 3. Contradiction.
Thus a.

Assume —(3. ~aV —f3. Contradiction. Thus 3. a A (.

Thus =(—aV-06) —aA[. Qed.

Interpretations

- The formalistic or logicistic approach:

the common mathematical language denotes / abbreviates
texts written in (first-order) logic; this language is not an
object of study of the foundations of mathematics.

- The naturalistic approach:

treats the common mathematical language (CML)
like a natural language; slogan: ,take the mathema-
tical language serious*

the grammar of CML is a natural language
grammar for the plain text components plus a
grammar for mathematical terms and formulas plus
some typically mathematical constructs

the semantics of CML is mainly given by an ade-
quate first-order formalization

the pragmatics of CML is determined by the desire
to write texts and proofs, whose formalizations are
formally correct

Some characteristics the grammar of CML:

combination of natural language and “mathematical
formulas”

specific, (re-)defined words, and figures of speech

hypothetical constructions (“assume”, “define”, “let”,

)

o typogra’phy (04767‘“7%7\/77)
— graphics (diagrams, pictures, ...)

— definitions, theorems, proofs

The semantics of CML can be taken in line with the logici-
stic approach:

— (first-order) predicate logic
— Gentzen-style natural deduction

— addition of further (implicit) assumptions and argu-
ments

— possibility of ambiguities in the translation

The pragmatics of CML is guided by the mathematical
practice:

— communication ,about some objective mathematical
reality*

— concise and unambiguous, up to some ,irrelevant*
details

— language is used with a common mathematical
background knowledge which follows from some
foundational theory, usually Zermelo-Fraenkel set

theory (ZFC)

— correct and complete proofs

6

— the reader has to supply relevant and fitting back-
ground knowledge as to make mathematical texts
correct; ambiguities can usually be resolved with
this criterion

— ‘“distances* between a text and its formalization can
vary

A programmatic text from the initial phase of
NAPROCHE describes this very clear cut semantic and
pragmatic situation by:

... From a linguistic perspective, the Language of Mathema-
tics 1s distinguished by the fact that its core mathematical
meaning can be fully captured by an intelligent translation
into first-order predicate logic. ...

This radical simplification of the linguistic framework can
be pictured as follows:

Semantics

English

render

English

Formal semantics

NAPROCHE oA First-order logic

Common mathematical language

This observation motivates the NAPROCHE (NAtural lan-
guage PROof CHEcking) project and its principal com-
ponents:

— modeling the grammar, semantics, and pragmatics
of CML

— theoretical studies and practical implementations
— controlled mathematical language

— semantics using DRT; proof representation struc-
tures PRS

— proof checking using existing formal proof-checkers
— applications:
— interfaces for formal mathematics systems

— writing texts for humans and machines

8

— tutorial applications

— interactions with the philosophy of mathe-
matics

In particular, the project aims at developing the
NAPROCHE system:

— The NAPROCHE project is centered around the
NAPROCHE system, a practical implementation of
semantics for parts of CML

— combines standard tools for writing mathematical
texts and for checking formal proofs with a DRT-
orientated grammar, adapted to CML and proof
checking

— linguistic issues

— mathematical issues

A quote from the initial phase of the project:

The ... project NAPROCHE aims at constructing a system
which accepts a controlled but rich subset of ordinary
mathematical language including TEX-style typeset formulas
and transforms them into formal statements. We adapt lin-
quistic techniques to allow for common grammatical con-
structs and to extract mathematically relevant implicit
information about hypotheses and conclusions. Combined

with proof checking software we obtain NAtural language
PROof CHEckers.

A screenshot from the NAPROCHE system so far:

)
'I!:\:r‘ll T --.._.—_.c.-_- — —_-—,_r:

File Edit Insert Text Proof-Checker Format Document View Go Tools Help

Theorem. a A 3+ —(—aV—j).

Proof. Assume a A 3. Assume for a contra-
diction that —a VvV —2.

Assume —a. «. Contradiction. Thus —a —
U

Assume —3. (. Contradiction. Thus =3 —
L

Hence contradiction. Thus —(-a VvV -—3).
Thus a A 3 — —(—a V-3).

Assume —(—a V —3). Assume for a contra-
diction that —«. Then —a VvV —3. Contradic-
tion. Thus c.

=
The proof is accepted!

This is a standard TEXyacg window with an incorporated
proof checker. The button ,Proof-Checker initiates the
checking of the current editing buffer, the result of the
check is output on the status line. In the example, , The
proof is accepted! because the argument so far is correct.
Whether the argument proves the Theorem is only checked

after the proof has been closed by a ,,Qed.”

The NAPROCHE system is a “mathematical Curt” (Black-
burn and Bos, 2005). On the left-hand side is the Curt
architecture, the NAPROCHE architecture on the right-

hand side has an adding typesetting layer at the top.

10

Input text (“Every man dies”)

] Parser, Tokenizer (readline.pl)
Tokenized format ([all, man, die])

1 NLP (natural language processing)
Internal representation (DRS)

!
FOL format (all(A,imp(man(A),die(A))))

1 (fol2otter.pl, fol2mace.pl)

Input format for theorem prover / model builder

Typeset mathematical text

!

IATEX-style format / XML format

!

Tokenized format

!

Internal representation

!

First-order logic format

!

Input format for theorem prover/checker

The first NAPROCHE prototype realized this concept as

follows:

— TpEXuacs + all other layers implemented in

home-grown PROLOG

— simple keyword language

— Theorem / Proof / Qed construct

— no explicit references to assumptions and lemmas

— only simple proof rules

The currently developed version of NAPROCHE will use

standard tools as follows:

Typeset mathematical text

I TEXuacs
adapted XML format

11

| Parser, Tokenizer
Tokenized format

1 XML — PRS Grammar
Proof representation structures

1 PRS — FOL
First-order logic format

| (fol2otter.pl)
Input format for theorem prover Otter

1 Otter
accepted / not accepted

Discussion of possible provers and proof checkers:

— proof checking can be done e.g. MIZAR or a home-
grown Prolog checker

— proof checking amounts to proving every statement
from available premises and methods, with e.g.
strong provers like Otter, Bliksem

— Problem: how to determine the available premises

— explicit declaration of premises: By Theorem
5.7 ...

— underspecified declarations which can be
resolved in
context: By induction hypothesis ...

12

— closely preceding statements

— Solution (?7): define a metric between statement in
text and
background knowledge, use premises with small distance

The crucial device for the complete system will be an
extended DRT format: PRS = proof representation struc-
tures. A formal grammar transforms XML texts into the
PRS semantics. This follows Blackburn-Bos, with mathe-

matical features added.

The current system interface is given by the mathematical
text editor TE])(MACS

— WYSIWYW IATEX-quality text editor

— uses the TEX and I#TEX algorithms and font hand-
ling

— developed since 1999 by Joris van der Hoeven
— Www.texmacs.org

— extendable system with scheme/guile as extension
language

— can be used as an interface to other programs and
for NAPROCHE

The TEXyacg format is a sort of markup language:

Theorem. (—pV 1Y) —(p—1).
Proof.

13

Let (mp V).

Let —p. Let . Contradiction. . Thus ¢ — . Thus —
p—(p—=1).

Let 1. Let . ¢. Thus ¢ — 1. Thus ¥ — (¢ —).

p— 1. Thus (mpVh) — (o= 1)),

Qed.

Internal representation (.tm file)

<TeXmacs|1.0.6>
<stylel|generic>
<\body>
Example:
<\quotation>
Theorem. <with|mode|math| (\<neg\>\<varphi\>\<vee\>\<psi\>)\<rightarrow\>
(\<varphi\>\<rightarrow\>\<psi\>)>.\
Proof.
Let <with|mode|math| (\<neg\>\<varphi\>\<vee\>\<psi\>)>.
Let <with|mode|math|\<neg\>\<varphi\>>. Let <with|mode|math|\<varphi\>>.
Contradiction. <with|mode|math|\<psi\>>. Thus
<with|mode|math|\<varphi\>\<rightarrow\>\<psi\>>. Thus

<with|mode|math|\<neg\>\<varphi\>\<rightarrow\>(\<varphi\>\<rightarrow\>\<psi\>)>.

The further plans for the development of the NAPROCHE
system include:

— declaration of premises (,,By Lemma ...“)

— definition of new symbols (,,Define a function ...%)

— set theoretic approach: formulas and abstraction
terms {z|p}; efficient handling of terms using
"lazy expansions”

— ellipses (,the sequence x1, ..., x,")

— providing background knowledge to the checker,
e.g., on natural numbers or finite sequences

14

— formalization of interesting theories

This involves many logical aspects like:
— identify deduction rules actually used in CML; these
rules might constitute a truely natural deduction

calculus

— for all 7 € I choose a; such that ...

— deal with the dynamic phenomenon that brackets
are usually explicitely opened but often not closed

There is a range of possible applications like:
— formalization of basic/interesting mathematical
domains:
”Logic for man and machines”

— tutorial applications

— natural language interfaces to provers and proof
checkers

— distinguishing explicit and implicit knowledge in
mathematical practice

15

