
The NAPROCHE Project
Linguistics and logic of common mathematical language I

Peter Koepke and Merlin Carl, Mathematical Institute
Universität Bonn

Mathematical texts are formulated in a semi-formal language, mixing natural language discourse
and mathematical formulas. The meaning of a mathematical text can be described by a transla-
tion into first-order formulas; the text is correct if its first-order translation is a formal proof in
a first-order proof calculus. The NAPROCHE project (NAtural language PROof CHEcking)
recognizes that there is a specific, semi-formal or natural mathematical language which ought to
be studied by linguistic techniques. The project aims at constructing a system which checks the
correctness of texts written in a controlled but rich sublanguage of ordinary mathematical lan-
guage including TEX-style typeset formulas. In our talk we demonstrate a small working proto-
type, explain its modular structure, and discuss future enhancements and extensions, with an
emphasis on the mathematical aspects of the system and its applications.

http: //www. math. uni - bonn. de/people/naproche/

Workshop Deduction in Semantics

Institut für Maschinelle Sprachverarbeitung,
Stuttgart, October 1 1 , 2007

1

The language of mathematics, example

Euclid:

2

The language of mathematics, example

Gauss:

3

The language of mathematics, example

This example, de Morgan’ s law, could be a basic exercise in
an introductory logic course; the solution is readable (by
humans) and is also accepted by the NAPROCHE proof
checking system. This indicates that the distance between
natural proofs and formal proofs may be reduced or even
eliminated.

Theorem. α ∧ β↔ ¬ (¬α ∨ ¬β) .

Proof. Assume α ∧ β. Assume for a contradiction that ¬
α ∨ ¬β.
Assume ¬α . α . Contradiction. Thus ¬α→⊥ .
Assume ¬β. β. Contradiction. Thus ¬β→⊥ .
Hence contradiction. Thus ¬ (¬α ∨ ¬β) . Thus α ∧ β→ ¬ (¬
α ∨ ¬β) .

Assume ¬ (¬α ∨ ¬β) . Assume ¬α . ¬α ∨ ¬β. Contradiction.
Thus α .
Assume ¬β. ¬α ∨ ¬β. Contradiction. Thus β. α ∧ β.
Thus ¬ (¬α ∨ ¬β) → α ∧ β. Qed.

4

Interpretations

- The formalistic or logicistic approach :

the common mathematical language denotes / abbreviates
texts written in (first-order) logic; this language is not an
object of study of the foundations of mathematics.

- The naturalistic approach :

− treats the common mathematical language (CML)
like a natural language; slogan: „take the mathema-
tical language serious“

− the grammar of CML is a natural language
grammar for the plain text components plus a
grammar for mathematical terms and formulas plus
some typically mathematical constructs

− the semantics of CML is mainly given by an ade-
quate first-order formalization

− the pragmatics of CML is determined by the desire
to write texts and proofs, whose formalizations are
formally correct

Some characteristics the grammar ofCML :

− combination of natural language and “mathematical
formulas”

− specific, (re-) defined words, and figures of speech

− hypothetical constructions (“assume”, “define”, “let”,
. . .)

5

− typography (α , β, � ,
a

b
,
√

, . . .)

− graphics (diagrams, pictures, . . .)

− definitions, theorems, proofs

− . . .

The semantics ofCML can be taken in line with the logici-
stic approach:

− (first-order) predicate logic

− Gentzen-style natural deduction

− addition of further (implicit) assumptions and argu-
ments

− possibility of ambiguities in the translation

The pragmatics of CML is guided by the mathematical
practice:

− communication „about some objective mathematical
reality“

− concise and unambiguous, up to some „irrelevant“
details

− language is used with a common mathematical
background knowledge which follows from some
foundational theory, usually Zermelo-Fraenkel set
theory (ZFC)

− correct and complete proofs

6

− the reader has to supply relevant and fitting back-
ground knowledge as to make mathematical texts
correct; ambiguities can usually be resolved with
this criterion

− “distances“ between a text and its formalization can
vary

A programmatic text from the initial phase of
NAPROCHE describes this very clear cut semantic and
pragmatic situation by:

. . . From a linguistic perspective, the Language ofMathema-
tics is distinguished by the fact that its core mathematical
meaning can be fully captured by an intel ligent translation
into first-order predicate logic. . . .

This radical simplification of the linguistic framework can
be pictured as follows:

English

Semantics

Formal semanticsrender

?
?

?

?

?

?

7

English

Formal semantics

First-order logic

Common mathematical language

NAPROCHE

This observation motivates the NAPROCHE (NAtural lan-
guage PROof CHEcking) project and its principal com-
ponents:

− modeling the grammar, semantics, and pragmatics
of CML

− theoretical studies and practical implementations

− controlled mathematical language

− semantics using DRT; proof representation struc-
tures PRS

− proof checking using existing formal proof-checkers

− applications:

− interfaces for formal mathematics systems

− writing texts for humans and machines

8

− tutorial applications

− interactions with the philosophy of mathe-
matics

In particular, the project aims at developing the
NAPROCHE system :

− The NAPROCHE project is centered around the
NAPROCHE system, a practical implementation of
semantics for parts of CML

− combines standard tools for writing mathematical
texts and for checking formal proofs with a DRT-
orientated grammar, adapted to CML and proof
checking

− linguistic issues

− mathematical issues

A quote from the initial phase of the project:

The . . . project NAPROCHE aims at constructing a system
which accepts a controlled but rich subset of ordinary
mathematical language including TEX-style typeset formulas
and transforms them into formal statements. We adapt lin-
guistic techniques to allow for common grammatical con-
structs and to extract mathematically relevant implicit
information about hypotheses and conclusions. Combined
with proof checking software we obtain NAtural language
PROofCHEckers.

9

A screenshot from the NAPROCHE system so far:

This is a standard TEXMACS window with an incorporated
proof checker. The button „Proof-Checker“ initiates the
checking of the current editing buffer, the result of the
check is output on the status line. In the example, „The
proof is accepted! “ because the argument so far is correct.
Whether the argument proves the Theorem is only checked
after the proof has been closed by a „Qed. “

The NAPROCHE system is a “mathematical Curt” (Black-
burn and Bos, 2005) . On the left-hand side is the Curt
architecture, the NAPROCHE architecture on the right-
hand side has an adding typesetting layer at the top.

1 0

Input text (“Every man di es ”)

l Parser, Tokenizer (readline. pl)

Tokenized format ([all , man, di e])

l NLP (natural language processing)

Internal representation (DRS)

l
FOL format (all (A, i mp(man(A) , di e (A))))

l (fol2otter. pl, fol2mace. pl)

Input format for theorem prover / model builder

Typeset mathematical text

l
LATEX-style format / XML format

l
Tokenized format

l
Internal representation

l
First-order logic format

l
Input format for theorem prover/checker

The first NAPROCHE prototype realized this concept as
follows:

− TEXMACS + all other layers implemented in
home-grown PROLOG

− simple keyword language

− Theorem / Proof / Qed construct

− no explicit references to assumptions and lemmas

− only simple proof rules

The currently developed version of NAPROCHE will use
standard tools as follows:

Typeset mathematical text

l TEXMACS

adapted XML format

1 1

l Parser, Tokenizer

Tokenized format

l XML→ PRS Grammar

Proof representation structures

l PRS→ FOL

First-order logic format

l (fol2otter. pl)

Input format for theorem prover Otter

l Otter

accepted / not accepted

Discussion of possible provers and proof checkers:

− proof checking can be done e. g. MIZAR or a home-
grown Prolog checker

− proof checking amounts to proving every statement
from available premises and methods, with e. g.
strong provers like Otter, Bliksem

− Problem: how to determine the available premises

− explicit declaration of premises: By Theorem
5. 7 . . .

− underspecified declarations which can be
resolved in
context: By induction hypothesis . . .

1 2

− closely preceding statements

− Solution (?) : define a metric between statement in
text and
background knowledge, use premises with small distance

The crucial device for the complete system will be an
extended DRT format: PRS = proof representation struc-
tures. A formal grammar transforms XML texts into the
PRS semantics. This follows Blackburn-Bos, with mathe-
matical features added.

The current system interface is given by the mathematical
text editor TEXMACS :

− WYSIWYW LATEX-quality text editor

− uses the TEX and LATEX algorithms and font hand-
ling

− developed since 1 999 by Joris van der Hoeven

− www. texmacs . org

− extendable system with scheme/guile as extension
language

− can be used as an interface to other programs and
for NAPROCHE

The TEXMACS format is a sort of markup language:

Theorem. (¬ϕ ∨ ψ) → (ϕ→ ψ) .
Proof.

1 3

Let (¬ϕ ∨ ψ) .
Let ¬ϕ . Let ϕ . Contradiction. ψ . Thus ϕ → ψ . Thus ¬
ϕ→ (ϕ→ ψ) .
Let ψ . Let ϕ . ψ . Thus ϕ→ ψ . Thus ψ→ (ϕ→ ψ) .
ϕ→ ψ . Thus (¬ϕ ∨ ψ) → (ϕ→ ψ) .
Qed.

Internal representation (. tm file)

<TeXmacs | 1 . 0 . 6>
<style | generi c>
<\body>

Example :
<\quotation>
Theorem. <wi th| mode | math| (\ <neg\>\<varphi \>\<vee\>\<psi \>) \ <ri ghtarrow\>

(\<varphi \>\<ri ghtarrow\>\<psi \>) > . \
Proof .
Let <wi th| mode | math| (\<neg\>\<varphi \>\<vee\>\<psi \>) > .
Let <wi th| mode | math| \ <neg\>\<varphi \>> . Let <wi th| mode | math| \ <varphi \>> .
Contradi cti on. <wi th| mode | math| \ <psi \>> . Thus
<wi th| mode | math| \ <varphi \>\<rightarrow\>\<psi \>> . Thus

<wi th| mode | math| \ <neg\>\<varphi \>\<rightarrow\> (\<varphi \>\<ri ghtarrow\>\<psi \>) > .
. . .

The further plans for the development of the NAPROCHE
system include:

− declaration of premises („By Lemma . . . “)

− definition of new symbols („Define a function . . . “)

− set theoretic approach: formulas and abstraction
terms {x | ϕ } ; efficient handling of terms using
”lazy expansions”

− ellipses („the sequence x1 , � , xn“)

− providing background knowledge to the checker,
e. g. , on natural numbers or finite sequences

1 4

− formalization of interesting theories

This involves many logical aspects like:

− identify deduction rules actually used in CML; these
rules might constitute a truely natural deduction
calculus

− ”for all i ∈ I choose ai such that . . . “

− deal with the dynamic phenomenon that brackets
are usually explicitely opened but often not closed

There is a range of possible applications like:

− formalization of basic/interesting mathematical
domains:
”Logic for man and machines ”

− tutorial applications

− natural language interfaces to provers and proof
checkers

− distinguishing explicit and implicit knowledge in
mathematical practice

− . . .

1 5

