Ordinal Computability

Peter Koepke, University of Bonn, Germany

Mathematical Logic Seminar

Stanford, April 14, 2006

Contents

- Standard computations over $\ensuremath{\mathbb{N}}$
- Infinite Time Turing Machines

- Ordinal machines
- Ordinal registers machines (ORMs)
- The Main Theorem
- A bounded truth predicate on the ordinals
- A recursion theorem
- Ordinal stacks
- The ordinal register program for the bounded truth predicate

Computations

Turing machines and register machines work on the structure $(\mathbb{N}, +1, 0) = (\omega, +1, 0)$:

- Turing cells can be indexed by \mathbb{N} ("space")
- register contents are elements of \mathbb{N} ("space")
- the length of a halting computation is an element of \mathbb{N} ("time")

Can we replace $(\mathbb{N}, +1, 0)$ by the structure $(\mathrm{Ord}, +1, 0)$ of ordinals?

Can we replace integer time / integer space by ordinal time / ordinal space?

Infinite time Turing machines (ITTMs)

Joel D. Hamkins and Andy Lewis. Infinite Time Turing Machines. *J. Symbolic Logic*, 65(2):567-604, 2000.

Take standard Turing machines with "finite" space $\mathbb N$ and infinite time Ord .

Limits of ordinals

Let t be a limit ordinal and $(\alpha_i | i < t)$ be a sequence of ordinals:

- $-\lim_{i < t} \alpha_i = \bigcup_{i < t} \alpha_i$ is the limit of (α_i)
- $\liminf_{i < t} \alpha_i = \lim_{i < t} \min \{ \alpha_i \mid i \le j < t \}$ is the inferior limit of (α_i)
- $\limsup_{i < t} \alpha_i = \min \{ \lim_{i \le j < t} \alpha_j | i < t \}$ is the superior limit of (α_i)

Define machine constellations at limit times by inferior limits:

- head positions
- cell / register contents
- state (\(\heta\) number of command in program)

Ordinal Computability, Stanford, April 2006

An ITTM can compute reals (= subsets of ω) It can compute the standard halting problem

 $\Delta_1^1\!\subsetneq\!\{a\!\subseteq\!\omega\!\mid\! a\text{ is computable by an ITTM}\}\!\subsetneq\!\Delta_2^1$

Ordinal machines

space ω , time ω	space ω , time Ord	space Ord, time Ord
Turing machine		Ordinal Turing machine
	$\Delta_1^1 \subsetneq computable \subsetneq \Delta_2^1$	OTM,
		computable ← constructible
register machine	Infinite time register machine	Ordinal register machine
	ITRM,	ORM,
	computable ↔ hyperarithmetic	computable ← constructible

Various ordinal machines

space ω , time ω	space ω , time Ord	space Ord, time Ord
Turing machine		Ordinal Turing machine
	$\Delta^1_1 \subsetneq computable \subsetneq \Delta^1_2$	OTM,
		computable \leftrightarrow constructible ¹⁾
register machine	Infinite time register machine	Ordinal register machine
_	ITRM,	ORM,
	computable \leftrightarrow hyperarithmetic ²⁾	computable \leftrightarrow constructible ³⁾

- 1) K., Bull. Symb. Logic 11 (2005)
- 2) K., to appear *Proc. CiE 2006*
- 3) R. Siders and K., submitted Archive Math. Logic

An Ordinal Register Machine (ORM)

has registers $R_0, R_1, ...$ which can hold *ordinal numbers*;

A register program consists of commands to increase or to reset a register;

The program may "jump" on condition of equality between two registers;

At limit times, register contents and program state are determined by \liminf 's.

An Ordinal Register Program

is a finite list $P = I_0, I_1, ..., I_{s-1}$ of *instructions* of the following types:

- a) the *zero instruction* Z(n) resets R_n to 0;
- b) the *successor instruction* S(n) increases R_n by 1;
- c) the *transfer instruction* T(m,n) replaces the contents of R_n by the contents of R_m ;
- d) the *jump instruction* J(m, n, q): if $R_m = R_n$, the ORM proceeds to the qth instruction of P, if $R_m \neq R_n$, the ORM proceeds to the next instruction of P.

An (ORM) computation by P is a pair

$$I: \theta \to \omega, R: \theta \to ({}^{\omega}\text{Ord})$$

such that:

- $-\theta$ is an ordinal or $\theta = \text{Ord}$; θ is the *length* of the computation;
- I(0) = 0; the machine starts in state 0;
- If $t < \theta$ and $I(t) \notin s = \{0, 1, ..., s 1\}$ then the machine *stops* with $\theta = t + 1$;
- If $t < \theta$ and $I(t) \in s = \{0, 1, ..., s-1\}$ then the machine constellation I(t+1) = I(t) + 1 and R(t+1) is determined by $I_{I(t)}$;
- If $t < \theta$ is a limit ordinal let

$$\forall k \in \omega \, R_k(t) = \liminf_{r < t} R_k(r);$$

$$I(t) = \liminf_{r < t} I(r).$$

Ordinal Computability, Stanford, April 2006

About
$$I(t) = \liminf_{r < t} I(r)$$

. . .

17:begin loop

. . .

21: begin subloop

...

29: end subloop

. . .

32:end loop

. . .

Ordinal Computability, Stanford, April 2006

The computation by P with input R(0)

is determined recursively by the initial register contents R(0) and the program P.

If the computation stops at $\theta = \beta + 1$ then $R(\beta)$ is the final register content which P has computed from R(0).

Write $P: R(0) \mapsto R(\beta)(0)$.

Ordinal Computability

A function $F: \operatorname{Ord}^n \rightharpoonup \operatorname{Ord}$ is (ordinal) computable if there is a program P such that for $(\alpha_0, ..., \alpha_{n-1}) \in \operatorname{dom}(F)$ holds

$$P: (\alpha_0, ..., \alpha_{n-1}, 0, 0, ...) \mapsto F(\alpha_0, ..., \alpha_{n-1}).$$

A set $x \subseteq \text{Ord}$ is computable (from ordinal parameters) if there is a program P and ordinals $\alpha_1, ..., \alpha_{n-1}$ such that

$$\forall \alpha \ P: (\alpha, \alpha_1, ..., \alpha_{n-1}) \mapsto \chi_x(\alpha).$$

Main Theorem.

 $x \subseteq \text{Ord}$ is computable iff $x \in L$, i.e., x is an element of Gödel's model of constructible sets.

Proof. (\subseteq) Let $x \subseteq \text{Ord}$ be computable. Take a program P and ordinals $\alpha_1, ..., \alpha_{n-1}$ such that

$$\forall \alpha \ P: (\alpha, \alpha_1, ..., \alpha_{n-1}, ...) \mapsto \chi_x(\alpha).$$

Computations by P are absolute between transitive models of set theory which have the same class of ordinals. Hence these computations can be carried out in the model L and χ_x , $x \in L$.

For the converse, one has to "compute L" by an ORM.

A bounded language

Let the language L_T be appropriate for first-order structures of the type

$$(\alpha, <, G, R)$$

where the Gödel pairing function G is viewed as a ternary *relation* on α and R is a unary relation on α :

- terms v_n and constants c_{ξ} for $\xi \in \text{Ord}$; c_{ξ} will be interpreted as ξ ;
- atomic formulas $t_1\!\equiv\!t_2$, $t_1\!<\!t_2$, $\dot{G}(t_1,t_2,t_3)$ and $\dot{R}(t_1)$;
- formulas $\neg \varphi$, $(\varphi \lor \psi)$, $\exists v_n < t \varphi$;
- assume an ordinal computable Gödelization such that for $\zeta < \xi$:

$$\varphi \frac{c_{\zeta}}{v_n} < (\exists v_n < c_{\xi} \varphi).$$

A bounded truth predicate on the ordinals

– Define the satisfaction relation $(\alpha, <, G, R) \vDash \varphi$ for sentences φ ;

$$- (\alpha, <, G, R) \vDash \varphi \text{ iff } (\varphi, <, G, R) \vDash \varphi.$$

Define the *bounded truth predicate* $T \subseteq \text{Ord}$ by

 $T(\alpha)$ iff α is a bounded L_T -sentence and $(\alpha, <, G, T \cap \alpha) \models \alpha$.

In short

$$T(\alpha)$$
 iff $(\alpha, T \cap \alpha) \models \alpha$.

T codes a model of set theory

For ordinals μ and α define "sections" of the truth predicate by

$$X(\mu, \alpha) = \{ \beta < \mu \mid T(G(\alpha, \beta)) \}.$$

Set

$$S = \{X(\mu, \alpha) | \mu, \alpha \in \text{Ord}\}.$$

Theorem. $S = \{x \subseteq \text{Ord} \mid x \in L\}.$

[Sketch for \supseteq : Show that $(\operatorname{Ord}, \mathcal{S}, <, =, \in, G)$ satisfies a natural theory of sets of ordinals; mathematics can be done in $(\operatorname{Ord}, \mathcal{S}, <, =, \in, G)$; define a version of Gödel's L inside $(\operatorname{Ord}, \mathcal{S}, <, =, \in, G)$; thus every constructible set of ordinals is an element of \mathcal{S} .]

A recursive definition of T

The characteristic function χ_T can be defined recursively

$$\chi_T(\alpha) = \left\{ \begin{array}{l} 1 \text{ iff } \exists \nu < \alpha \ H(\alpha, \nu, \chi_T(\nu)) = 1 \\ 0 \text{ else} \end{array} \right.$$

with a computable function H:

$$\begin{split} H(\alpha,\nu,\chi) = 1 & \text{ iff } & \alpha \text{ is an } L_T\text{-sentence and} \\ & \exists \xi, \zeta < \alpha \, (\alpha = c_\xi \equiv c_\zeta \wedge \xi = \zeta) \\ & \text{ or } & \exists \xi, \zeta < \alpha \, (\alpha = c_\xi < c_\zeta \wedge \xi < \zeta) \\ & \text{ or } & \exists \xi, \zeta, \eta < \alpha \, (\alpha = \dot{G}(c_\xi,c_\zeta,c_\eta) \wedge \eta = G(\xi,\zeta)) \\ & \text{ or } & \exists \xi < \alpha \, (\alpha = \dot{R}(c_\xi) \wedge \nu = \xi \wedge \chi = 1) \\ & \text{ or } & \exists \varphi < \alpha \, (\alpha = \neg \varphi \wedge \nu = \varphi \wedge \chi = 0) \\ & \text{ or } & \exists \varphi, \psi < \alpha \, (\alpha = (\varphi \vee \psi) \wedge (\nu = \varphi \vee \nu = \psi) \wedge \chi = 1) \\ & \text{ or } & \exists n < \omega \exists \xi < \alpha \exists \varphi < \alpha \, (\alpha = \exists v_n < c_\xi \varphi \wedge \exists \zeta < \xi \, \nu = \varphi \frac{c_\zeta}{v_n} \wedge \chi = 1). \end{split}$$

A recursion theorem

Let $H: \operatorname{Ord}^3 \to \operatorname{Ord}$ be ordinal computable and define $F: \operatorname{Ord} \to \operatorname{Ord}$ recursively by

$$F(\alpha) = \left\{ \begin{array}{l} 1 \text{ iff } \exists \nu < \alpha \; H(\alpha, \nu, F(\nu)) = 1 \\ 0 \text{ else} \end{array} \right.$$

Then F is ordinal computable.

The computation of F can be visualized along a well-founded tree:

Computing along a well-founded tree

$$F(\alpha) = \left\{ \begin{array}{l} 1 \text{ iff } \exists \nu < \alpha \; H(\alpha, \nu, F(\nu)) = 1 \\ 0 \text{ else} \end{array} \right.$$

Stacks of ordinals

One can organize the traversal of the tree using descending stacks of ordinals.

Code
$$\alpha_0 > \alpha_1 > \dots > \alpha_{n-2} \geqslant \alpha_{n-1}$$
 by

$$\alpha = \langle \alpha_0, \alpha_1, ..., \alpha_{n-2}, \alpha_{n-1} \rangle = 3^{\alpha_0} + 3^{\alpha_1} + ... + 3^{\alpha_{n-2}} + 3^{\alpha_{n-1}}.$$

The ordinals $\alpha_{n-1}, \alpha_{n-2}$ are ordinal computable by some programs last, llast. The functions return a special value UNDEFINED if the stack is too short.

The program

```
%% set value undefined
value:=2
MainLoop:
 nu:=last(stack)
 alpha:=llast(stack)
 if nu = alpha then
1: do
   remove_last_element_of(stack)
   value:=0
                 %% set value equal to 0
    goto SubLoop
   end
 else
2: do
    stack:=stack + 1 %% push 0 onto stack
    goto MainLoop
    end
SubLoop:
 nu:=last(stack)
```

```
alpha:=llast(stack)
 if alpha = UNDEFINED then STOP
  else
    do
   if H(alpha, nu, value)=1 then
3:
     remove_last_element_of(stack)
     value:=1
     goto SubLoop
     end
    else
4:
     stack:=stack + (3**y)*2 %% push y+1
     value:=2
                 %% set value undefined
     goto MainLoop
     end
    end
```

The ordinal computation I, R by the program P has the following properties

- a) If I,R is in state MainLoop at time s with stack contents $\langle \alpha_0,...,\alpha_{n-1} \rangle$ where $n \geqslant 1$ then I,R will get into state SubLoop at a later time t with the same stack contents $\langle \alpha_0,...,\alpha_{n-1} \rangle$ and the register value holding the value $F(\alpha_{n-1})$. Moreover in the interval [s,t) the contents of stack will always be at least as big as $\langle \alpha_0,...,\alpha_{n-1} \rangle$.
- b) Let I,R be in state MainLoop at time s with stack contents $\alpha_0 > ... > \alpha_{n-1}$ where $n \geqslant 1$. Define $\bar{\alpha} =$ the minimal ordinal $\nu < \alpha_{n-1}$ such that $H(\alpha_{n-1},\nu,F(\nu))=1$ if this exists and $\bar{\alpha} = \alpha_{n-1}$ else. Then there is a strictly increasing sequence $(t_i|i\leqslant\bar{\alpha})$ of times $t_i>t$ such that I,R is in state MainLoop at time t_i with stack contents $\langle\alpha_0,...,\alpha_{n-1},i\rangle$. Moreover in every time interval $[t_i,t_{i+1})$ the stack contents are $\geqslant \langle\alpha_0,...,\alpha_{n-1},i\rangle$.
- c) If I,R is in state MainLoop with stack contents $\langle \alpha \rangle$ then it will later *stop* with stack contents $\langle \alpha \rangle$ and the register value holding the value $F(\alpha)$. Hence the function F is ordinal register computable.

Main Theorem.

 $x \subseteq \text{Ord}$ is computable iff $x \in L$, i.e., x is an element of Gödel's model of constructible sets.

Proof. (\supseteq) Let $x \subseteq Ord$ be constructable. By a previous theorem

$$x = X(\mu, \alpha) = \{\beta < \mu \,|\, T(G(\alpha, \beta))\}$$

for some $\mu, \alpha \in \text{Ord. } x$ is ordinal computable, since T is ordinal computable.

QED

Further aspects

- transfer notions along the correspondance ordinal computability - constructibility
- ordinalize other notions of computability