Ordinal Computability

Peter Koepke, University of Bonn, Germany

Mathematical Logic Seminar

Stanford, April 14, 2006

unive rsitétbonnl

Contents
- Standard computations over N

- Infinite Time Turing Machines

- Ordinal machines

- Ordinal registers machines (ORMSs)

- The Main Theorem

- A bounded truth predicate on the ordinals
- A recursion theorem

- Ordinal stacks

- The ordinal register program for the bounded truth predicate

Computations
Turing machines and register machines work on the
structure (N, +1,0) = (w,+ 1,0):

— Turing cells can be indexed by N (“space”)

— register contents are elements of IN (“space”)

— the length of a halting computation is
an element of IN (“time”)

Can we replace (N, + 1, 0) by the structure (Ord, + 1,0) of
ordinals?

Can we replace integer time / integer space by
ordinal time / ordinal space?

Infinite time Turing machines (ITTMs)

Joel D. Hamkins and Andy Lewis.
Infinite Time Turing Machines.
J. Symbolic Logic, 65(2):567-604, 2000.

Take standard Turing machines with “finite” space IN
and infinite time Ord.

N, P(N)space imits of previous constellations

< |

/M

19 o o w

Ord time

Limits of ordinals

Let ¢ be a limit ordinal and («;]i <t) be a sequence of ordinals:
— im0 =, _, o is the limit of («;)
— liminfj.; ;= lim; <, min {o; |7 < j <t} is the inferior limit of ()
— limsup;<; ;= min {lim; ;. ;|7 <t} is the superior limit of (a)

Define machine constellations at limit times
by inferior limits:

— head positions
— cell / register contents

— state (= number of command in program)

An ITTM can compute reals (= subsets of w)
It can compute the standard halting problem

A1 C{a Cw|ais computable by an ITTM} C A}

Ordinal machines

space w, time w

space w, time Ord

space Ord, time Ord

Turing machine

ITTM
A1 C computable C A}

Ordinal Turing machine
OTM,
computable < constructible

register machine

Infinite time register machine
ITRM,

computable < hyperarithmetic

Ordinal register machine
ORM,
computable < constructible

Various ordinal machines

space w, time w |space w, time Ord space Ord, time Ord
Turing machine |ITTM Ordinal Turing machine
A1 C computable C A} OTM,
computable « constructible!
register machine | Infinite time register machine Ordinal register machine
ITRM, ORM,
computable « hyperarithmetic? | computable «— constructible®

1) K., Bull. Symb. Logic 11 (2005)
2) K., to appear Proc. CIiE 2006

3) R. Siders and K., submitted Archive Math. Logic

An Ordinal Register Machine (ORM)
has registers Ry, R1,... which can hold ordinal numbers;

A register program consists of commands to increase
or to reset a register;

The program may “jump’” on condition of
equality between two registers;

At limit times, register contents and program state
are determined by liminf’s.

10

An Ordinal Register Program

is a finite list P= 1y, I1, ..., I,_1 of instructions of the following types:
a) the zero instruction Z(n) resets R, to 0;
b) the successor instruction S(n) increases R, by 1;

c) the transfer instruction T'(m,n) replaces the contents of R,
by the contents of R,,;

d) the jump instruction J(m,n, q):
if k,,= R,, the ORM proceeds to the ¢th instruction of P,
if R,,#+ R,, the ORM proceeds to the next instruction of P.

11

An (ORM) computation by P is a pair
I0—w,R:.0—(“Ord)
such that:
— #@is an ordinal or 8= 0rd; @ is the length of the computation,;
— I(0)=0; the machine starts in state 0;
— Ift<fand I(t)¢s={0,1,...,s — 1} then the machine stops with =1+ 1;

— Ift<fand I(t)es={0,1,...,s — 1} then the machine constellation
I(t+1)=1(t)+ 1 and R(t+1) is determined by I;¢;

— Ift<fis alimit ordinal let

Vk€wRy(t) = liminf Ry(r);

r<t
I(t) = liminf I(r).

r<t

12

About I(t) =liminf, 4 I(r)

17:begin loop

21: begin subloop

29: end subloop

32:end loop

13

The computation by P with input R(0)

is determined recursively by the initial register
contents R(0) and the program P.

If the computation stops at =5+ 1 then R(j3) is
the final register content which P has computed from R(0).

Write P: R(0)+— R(5)(0).

14

Ordinal Computability

A function F: Ord"— Ord is (ordinal) computable if there is a program P
such that for («y, ..., a,,_1) € dom(F’) holds

P: (Oéo,...,Oén_l,o,o,...>I—>F(Oé0,...,()én_1).

A set x COrd is computable (from ordinal parameters) if there is a
program P and ordinals a4, ..., «,—1 such that

Va P: (o, o, ..., 1) — Xa(@).

15

Main Theorem.

x COrd is computable iff z € L, i.e., x is an element of Gddel’s
model of constructible sets.

Proof. (C) Let x COrd be computable.
Take a program P and ordinals a4, ..., a,,—1 such that

Va P:(a,aq, ..., 1, ...) — Xa(@).

Computations by P are absolute between transitive models of set theory
which have the same class of ordinals. Hence these computations can
be carried out in the model L and x..,x € L.

For the converse, one has to “compute L” by an ORM.

16

A bounded language

Let the language L be appropriate for first-order structures of the type
(v, <,G,R)

where the Godel pairing function G is viewed as a ternary relation on « and R is a unary rela-
tion on a:

— terms v, and constants c; for £ € Ord; c¢ will be interpreted as ¢;
— atomic formulas t; =ty t; <ta, G(t1, 12, t3) and R(t);

— formulas -, (p V), Jv, <ty;

— assume an ordinal computable Gédelization such that for { < ¢:

gpg < (Fup <ce).

Un

17

A bounded truth predicate on the ordinals
— Define the satisfaction relation («, <, G, R) E ¢ for sentences ¢;
— (a,<,G,R)Fyiff (p,<,G,R)F .

Define the bounded truth predicate T'C Ord by

T(«) iff «is abounded Ly-sentence and (o, <, G, TNa)Fa.
In short

T(a) iff (o, TNa)Fa.

18

T codes a model of set theory

For ordinals 1 and o define “sections” of the truth predicate by
X(p,a)=1{8<p|T(Gla, B)}.
Set
S={X(p,a)|pu,a€Ord}.

Theorem. S={x COrd |z € L}.

[Sketch for O: Show that (Ord, S, <, =, €,G) satisfies a natural theory of
sets of ordinals; mathematics can be done in (Ord, S, <,=,€,G);

define a version of Godel's L inside (Ord, S, <,=,€,G); thus every
constructible set of ordinals is an element of S.]

19

A recursive definition of T

The characteristic function yr can be defined recursively

Liff w<a H(a,v, xr(v))=1
xr(@) :{ 0 else)

with a computable function H:

H(a,v,x)=1 iff aisan Ly-sentence and
3¢, (<ala=ce=ccNE=()
or 3¢, (<ala=ce<ccNE<()
or 3, ¢,n<ala=Gleg e ey) An=G(E, ()
or I <a(a=R(c)A\v=ENAx=1)
or dJp<ala=—-pAv=pAx=0)
or dp, Yy <ala=(pVY)A(v=pVr=19)Ax=1)
or E|n<w5|§<045|90<oz(oz:Elvn<c§go/\E|C<§V:go%/\le).

20

A recursion theorem

Let H: Ord® — Ord be ordinal computable and
define F: Ord — Ord recursively by

liff w<a H(a,v,F(v)=1
0 else

Fla) = {

Then F'is ordinal computable.

The computation of F' can be visualized along a well-founded tree:

21

Computing along a well-founded tree

Fla)= liff w<a H(a,v,F(v)=1
| Oelse

Fw+w
<>/</ \\\U
| / \
F(0)=0 F(0
F(OL:O

22

Stacks of ordinals

One can organize the traversal of the tree using descending stacks
of ordinals.

Code Y>> ... > 0—9 =0y by

= (U, 1, ey Qpy—, Q1) = 3M0 4 3N 4 4 3¥n-2 4 31,

The ordinals «,,—1, oy, are ordinal computable by some
programs last, 11last. The functions return a special value
UNDEF INED if the stack is too short.

23

The program

value:=2 %% set value undefined
MainLoop:
nu:=last (stack)
alpha:=1llast (stack)
if nu = alpha then
l: do
remove_last_element_of (stack)
value:=0 %% set value equal to O
goto SubLoop
end
else
2: do
stack:=stack + 1 %% push 0 onto stack
goto MainLoop
end
SubLoop:
nu:=last (stack)

24

alpha:=1llast (stack)
if alpha = UNDEFINED then STOP
else

do
if H(alpha,nu,value)=1 then
do
remove_last_element_of (stack)
value:=1
goto SubLoop
end
else
do
stack:=stack + (3**y)*2 %% push y+1
value:=2 %% set value undefined
goto MainLoop
end
end

The ordinal computation 7, R by the program P has the following properties

a)

If I, Ris in state MainLoop at time s with stack contents («ay, ..., a,,—1) where n>1 then
I, R will get into state SubLoop at a later time ¢ with the same stack contents (ay, ...,
a,—1) and the register value holding the value F(«,-1). Moreover in the interval [s, ?)
the contents of stack will always be at least as big as (ay, ..., a,—1).

Let I, R be in state MainLoop at time s with stack contents ag>... > «a,_1 Where n > 1.
Define a =the minimal ordinal v < «,—; such that H(a,—1, v, F(v)) =1 if this exists and
a = oy, €else. Then there is a strictly increasing sequence (t;|i < «) of times t; >t such
that 7, R is in state MainLoop at time ¢; with stack contents («, ..., a,—1,7) . Moreover
in every time interval [t;,¢;+1) the stack contents are > («ay, ..., a,—1,17).

If 7, R is in state MainLoop with stack contents («) then it will later stop with stack
contents (o) and the register value holding the value F(«). Hence the function F is
ordinal register computable.

25

Main Theorem.

x COrd is computable iff z € L, i.e., x is an element of Gddel’s
model of constructible sets.

Proof. (D) Let x C Ord be constructable.
By a previous theorem

r=X(u,a)={8<u|T(Gla,5))}

for some u,a € Ord. x is ordinal computable, since T'is
ordinal computable.

QED

26

Further aspects

— transfer notions along the correspondance
ordinal computability - constructibility

— ordinalize other notions of computability

27

