Ordinal Computability

BY PETER KOEPKE

University of Bonn

EMU - Effective Mathematics of the Uncountable
CUNY Graduate Center, August 8, 2008

A standard TURING computation

0
1
0
0
0

0
1

dnin+17]...

1

0(010]01(0

0(010]01(0

0(010]01(0

0(010]01(0

O(0p1]1

OfL(1]0]0

11110
0(1]12(3]4

n+110[0]0[{0]0

n

4
3
2
1
0

=

T I M E

The shape of standard Turing computations

space IN

time IN

space IN

The shape of BSS computations

space IR space R

time IN

Real functions, differential equations, dynamical systems

space IR

time R

space R

Standard Turing computations are based on the ordinal w =IN

space w =N space w

time w

Ordinals

Natural numbers:

0=0,1={0},2={0,1}, ..., n={0,1,...,n — 1}, ...
w=N={0,1,2,...,n,...}

Ordinal numbers:
0,1,2,..n,..,w,wt+l=wU{w}, ...,a,a+1=aU{a},...., Ny, ..., N, ...
oc0o=0rd={0,1,2,...,w,...,,...}

Ordinal computations

space Ord space Ord

time Ord time Ord

Limit ordinals and ordinal limits

An ordinal A is a limit ordinal, if it is not of the form A=0or A= pu+1.
Let {a¢|& <A} COrd.

supe<r ag=J_, a¢ €O0rd, mingcyag=(,_, ag€Ord.

lim inf§<)\ Qe =8BUPc< (min<<§<,\ Oég).

Ordinal computations: lim inf at limit ordinals

space Ord

space Ord

time Ord

A time Ord

~-6-computations

space 0

time -y

11

space 0

ITTM computations are oco-w-computations

space w

time oo

12

space w

Ordinal register machines (ORM) (with Ryan Siders)

space Ord space Ord

time oo

13

A register program is a finite list P = Iy, I1, ..., [,_1 of instructions:

the zero instruction Z(n) set register R, to 0;
the successor instruction S(n) increases register R, by 1;

the oracle instruction O(n) sets register R, to 1 if its content is an element
of the oracle, and to 0 otherwise;

the transfer instruction T'(m,n) sets R, to the contents of R, ;

the jump instruction J(m, n, q): if R, = R,, the register machine proceeds

to the qth instruction of P; otherwise it proceeds to the next instruction in
P.

14

Let P= Py, Py, ..., P,_1 be a register program. A pair
S:0—w,R:0— (“Ord)
is the ORM computation by P with oracle Z C Ord if:
a) 0 is a successor ordinal or 8 =0Ord; 0 is the length of the computation;
b) S(0)=0; the machine starts in state 0;

c) If t<@ and S(t)¢s={0,1,...,s — 1} then § =t + 1; the machine stops if the
machine state is not a program state of P;

d) If t <@ and S(t) € {0,1,..., s — 1} then t + 1 < 0; the next configuration is
determined by the instruction Pggy:

15

e) If t < 6 is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

Vk €w Ry(t) = liminf Ry(r);

r—t
S(t) = liminf S(r).

r—t

—— 17:begin loop

21: begin subloop

29: end subloop

32:end loop

16

x C Ord is ORM computable (from parameters) if there are a program P and ordi-
nals d1,...,9,_1 such that

Va P:(a,61,...,0,-1,0,0,...) — xz(a),

where x, is the characteristic function of x.

Theorem. z C Ord is ORM computable ift x € L, where L is GODEL’s inner model
of constructible sets.

Proof. — is obvious, since ORM computations can be carried out in L with the
same results.

« relies on the following

17

Recursion Theorem. Let H: Ord® — Ord be ORM computable. Define

Fla)= liff w<a H(a,v,F(v))=1
| Oelse

Then F':Ord — Ord is ORM computable.

Proof. To determine F'(«y), organize the search for ay < g with H («, arg, F'(ay)) =
1 and the search for F'(ay) by a stack

Flag)?, F(en)?, ..., Flan-1)7
Code the stack ag> a3 > ... > a;,,_1 by one ordinal

= (g, A1, ooy Qly—9, Q1) = 30+ 3 .. 4 3% 24 31,

18

value:=2
MainLoop:
nu:=last(stack)
alpha:=llast(stack)
if nu = alpha then
1: do
remove_last_element_of (stack)
value:=0
goto SubLoop
end_do
else
2: do
stack:=stack + 1
goto MainLoop
end_do

SubLoop:
nu:=last(stack)

alpha:=1llast(stack)
if alpha = UNDEFINED then STOP
else
do
if H(alpha,nu,value)=1 then
3: do
remove_last_element_of (stack)

value:=1
goto SubLoop
end_do
else
4: do
stack:=stack + 2% (3%xy)
value:=2

goto MainLoop
end_do
end_do

19

computable approach to L

proving the continuum hypothesis = counting the number of ORM com-
putable subsets of w

fine structure of L: define SILVER machines from an ORM program
which “computes L”

are (some) fine structural constructions computations?

approximate oo-oo-machines by a-a-machines, a — oo

20

a-a-computations for admissible a (with Benjamin Seyfferth)

space « space «

time «

21

Theorem. Let a be an admissible ordinal and X C «. Then

a) X is computable by an a-a-register machine in parameters < « iff

X € Ai(La)

b) X is computably enumerable by an a-a-register machine in parameters < «
iff X eXi(La)

One can characterize when a limit ordinal 3 is admissible using 3-(-machines.
One can do parts of a recursion theory using a-a-machines, e.g., the SACKS-
SIMPSON theorem.

22

Ordinal register computability

Register space w space admissible a | space Ord
machines
time w standard register |- -
machine
computable = A
time ? a register machine |-
admissible a (cv recursion theory)
computable =
Aq(L,)
time Ord ? ? Ordinal register
machine
computable =
LNP(Ord)

23

Ordinal TURING computability

TURING space w space admissible a | space Ord
time w standard TURING |- -
machine
computable = A
time ? « TURING machine |-
admissible « (a-recursion theory)
computable =
Aq(L,)
time Ord ITTM ? Ordinal TURING
Al C computable machine
in real parameter computable =
CA; LNP(Ord)

24

Ordinal register computability

Register space w space admissible a | space Ord
machines
time w standard register - -
machine
computable = A
time ? a register machine |-
admissible o (e recursion theory)
computable =
Aq(L,)
time Ord ITRM ?

Infinite time register
machine
computabel in real
parameters = 7

Ordinal register
machine
computable =

LNP(0rd)

25

Infinite Time Register Machines (ITRM) (with Russell Miller)

Let P=PFy, Py,..., P._1 be a register program. A pair
S:0—w,R: 00— (“w)

is the infinite time register computation by P with oracle Z C w if:

a) ...

b) If t < 6 is a limit ordinal, the machine constellation at t is determined by
taking inferior limits or in case of overflow resetting to 0:

~f 0, if liminf, ; Ry(r)=w,
vk Ew Ri(t) = { liminf,_; Ri(r), else;
S(t) = liminf S(r).

r—t

26

A subset A CP(w)=R is ITRM-computable if there is a register program P and an
oracle Y C w such that for all Z Cw:

Ze A P:(0,0,..),Y x Zr—1, and Z¢& A iff P:(0,0,...),Y x Z+0

where Y X Z is the cartesian product of Y and Z with respect to the pairing func-
tion

(4. 2) (y+z)(g+z+1) L

27

Stacks

Code a stack (ro,...,7;,—1) of natural numbers by

r=2m.3m. 5. .p'm-1

m

Proposition 1. Let o < 7 where 7 is a limit ordinal. Assume that in some ITRM-
computation using a stack, the stack contains v = (rq, ..., Tm—1) for cofinally many
times below T and that all contents in the time interval («, T) are endextensions of
r=(rg,...,"m—1). Then at time T the stack contents are

r=(rg,...; Tm_1)-

28

push 1; %% marker to make stack non-empty
push 0; %% try O as first element of descending sequence
FLAG=1; %% flag that fresh element is put on stack
Loop: Casel: if FLAG=0 and stack=0 %), inf descending seq found

then begin; output ’no’; stop; end;

Case2: if FLAG=0 and stack=1 %7 inf descending seq not found
then begin; output ’yes’; stop; end;

Case3: if FLAG=0 and length-stack > 1 %% top element cannot be continued infinitely
then begin; %% try next
pop N; push N+1; FLAG:=1; %) flag that fresh element is put on stack
goto Loop;
end;

Case4: if FLAG=1 and stack-is-decreasing
then begin;
push 0; %% try to continue sequence with 0
FLAG:=0; FLAG:=1; %} flash the flag
goto Loop;
end;

Caseb: if FLAG=1 and not stack-is-decreasing
then begin;
pop N; push N+1; %) try next
FLAG:=0; FLAG:=1; %) flash the flag
goto Loop;
end;

29

Lemma 2. Let I: 0 — w, R: 0 — (“w) be the computation by P with oracle Z and
trivial input (0,0,...). Then

a) If Z is wellfounded then the computation stops with output ‘yes’.

b) If Z is illfounded then the computation stops with output ‘no’.

Theorem 3. The set WO = {Z C w|Z codes a wellorder} is computable by an
ITRM.

Theorem 4. Every I1i set A CP(w) is ITRM-computable.

30

[TTMs can simulate I'TRMs:

Simulate the number ¢ in register R,, as an initial segment of ¢ 1’s on the m-th tape
of an I'TTM.

If \is a limit time and liminf,_,) R,,(7) = i* < w then the m-th tape will hold an
initial segment of ¢* 1’s.

OK, if ¢* is finite.

If +* = w, this may be detected by a subroutine which then resets the m-th tape to
0.

Since ITTM-decidable C Al :

31

Ordinal register computability

Register space w space admissible a | space Ord
machines
time w standard register |- -
machine
computable = A
time ? a register machine |-
admissible « (e recursion theory)
computable =
Aq(L,)
time Ord ITRM ?

A1 C computable
in real parameter
CA;

Ordinal register
machine
computable =

LNP(0rd)

32

ITRMs, ITTMs, and halting problems

(S, R) is a configuration if S € w is a program state and R: w — w where R(n) =0
for almost all n <w. Define a wellfounded partial order of configurations

<S(), RQ> < (Sl, R1> iff S() < Sl and Vn <w RQ(TL) < R1<n>

33

Lemma 5. Let

S:0—w,R: 00— (“w)

be the infinite time register computation by P with input (0, 0, ...) and oracle Z.
Then this computation does not halt iff there are 7o < 11 <6 such that

(5(70), R(10)) = (S(71), R(71)) and V7 € [10, 7] (5(70), R(70)) < (5(7), R(T)).

(5, R)

/\/\/VM

70 1 0

34

Proof. (—) Assume that the computation does not halt. Let A be the set of all
configurations occuring class-many times. A is downwards directed in the partial
order of configurations:

for (So, Ry), (S1, R1) € A choose a sufficiently high w-sequence 79 < 71 < -+- of stages
such that each (S;, R;) occurs at all stages of the form 79.,4; with i < 2.

Then (S, R) occuring at stage sup,, 7, has (S, R) < (1o, Rp) and (S, R) < (I1, R1).

Let (So, Rp) be the unique <-minimal element of A. Choose sufficiently high stages
7o, T1 such that 7o <7 with (S(7), R(70)) = (S(11), R(71)) = (So, Ro).

39

(«—) For the converse assume that there are 79 <13 < 6 such that and
(5(70), B(70)) = (S(11), B(71)) and Y7 & [1, 1] (S(70), R(70)) < (5(7), R(7)).
Then if o > 7 is of the form o =79+ (11 —70) -+ B, 6 <711 — 70 then

(S(0), R(0)) = (S(10+ 0), R(10+).

So the computation does not stop.

36

Theorem 6. The halting problem for ITRMs

{(P,Z) | Pis a register program, Z Cw, and the computation by P
with input (0,0,...) and oracle Z halts}

s decidable by an I'TTM with oracle Z.
ITRMs are weaker than ITTMs.

Proof. Implement the criterion of Lemma 5 on an I'TTM.
Simulate the computation for (P, Z).
Use an auxiliary tape with cells for each possible configuration of the ITRM.

At stage 7 of the simulation erase from the auxiliary tape all 1’s for configurations
which are not < (S(7), R(7)), put a 1 for the configuration (S(7), R(7)).

If there was already a 1 in this cell, then by Lemma 5 the computation diverges.

If the simulation stops the computation stops.]

37

Theorem 7. The restricted halting problem for ITRMs

{(P,Z) | P is a register program using at most N registers, Z Cw,
and the computation by P with input (0,0,...) and oracle Z halts}

s decidable by an ITRM with oracle Z, for every N < w.

Proof. Emulate the bookkeeping of the previous proof using auxiliary registers.
C(r)={(S(0), R(o))|loc <7 AVo'€|o,7](5(0), R(0)) < (5(0”), R(c))}
The halting criterion becomes
A7 ((S(7), R(1)) € C(1)).

C'(7) can be carried along using N + const extra registers.

38

Theorem 8.

The strength of ITRMs using N registers grows eventually strictly with N.

There cannot be a universal ITRM.

Question. For which N is an N-register ITRM strictly weaker than an N + 1-reg-
ister ITRM?

39

Infinite time register computable model theory

Follow HAMKINS, MILLER, SEABOLD, WARNER Infinite Time Computable Model
Theory using:

— decide WF and WO

— decide the elementary diagram of first-order structures on N since it is Af in
the code for the structure

— lost melody theorem

40

