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Effective computability

e f is recursive

e f is finitely definable

e f is Herbrand-Godel computable

e [ is representable in a consistent formal system DR
e f is Turing computable

e [ is flowchart (or “while”) computable

e f is A-definable
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Roles of natural numbers

e finite number of steps in calculations and deductions

e finite contents of memory in computations

e finite size of programs, recursion schemas, A-terms, etc.
e algebraic properties: 0, n+ 1

e order properties: m <n

e Induction and recursion
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Other algebraic domains or orders

e continuous time R
e numbers and data from other rings and fields

e ordinal numbers
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Ordinals

e ’counting unboundedly”
e finite ordinals = natural numbers: 0,1,2.3,...,n,...
e endextend by limits: 0,1,2,3,....n,...,00

e endextend by successors: 0,1,2,3,...,n,...,00,00+ 1
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Ordinals

e The ordinals form a proper class Ord of objects
e the ordinals are linearly ordered

e the ordinals are closed under the + 1 -operation
e there are limit ordinals like w,w+ w, ..., Ny, ...

e the ordinals are wellordered, i.e. there is no infinite
descending chain oy > a1 > ay > ... of ordinals

e the ordinals are the ordertypes of wellordered sets
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Ordinals

e one can do induction and recursion along the ordinals
e ordinal addition is defined by recursion

o initial case: a4+ 0=«

o successor case: a+ (f+1)=(a+ () +1

o limit case: if § is a limit ordinal then

a+ﬂ=g%&+ﬂ
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Ordinal register machines
a+ (3 can be “‘computed” as follows:
e put o and (3 in registers Ry and R,
e set a register Ry to 0
e count up registers Ry and Rs in parallel
e stop when R, reaches R;, and output R

e at limit “times” let the contents of Ry and Rs be the limits
of the previous contents
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Ordinal register machines

Ry € Ord
Control R, € Ord
Program
States
R, € Ord

Time

> Ord
0 1 w w1 N
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Ordinal register machines, successor times

A register program is a finite list P = Iy, I, ..., I,_; of instructions:

the zero instruction Z(m) set register R,, to 0
the successor instruction S(m) increases register R, by 1

the transfer instruction T (m, m’) sets R, to the contents

of R,,

the jump instruction J(m,m/', q): if R, = R,,, the register
machine proceeds to the qth instruction of P: otherwise it
proceeds to the next instruction in P

the machine halts if the “next instruction” is not in P
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Ordinal register machines, limit times

Let ¢t € Ord be a limit “time”

liminf, ,; R,,(s) is the smallest ordinal p such that
{s <t|R,,(s) < p} is unbounded in ¢

at limit times, the machine registers follow the liminf rule

R,,(t) =liminf R,,(s)

s—t

at limit times the program jumps to a specific limit state
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ORM computable functions

e a+ [

e «-0, wherea-0=0 a-(f+1)=(a-0)+aq,
a-y=limg., (- 3), for limit ordinals =y

o o wherea’=1, o’ '=0a"q,
o’ =limg..a” for limit ordinals ~
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ORM computability

e what is the class of ORM computable functions?

e what is the class of ORM computable sets, i.e. the class of
sets of the form

la<p|F(a,7)=1}

where F' is ORM computable and 3, € Ord?
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A recursion theorem

Let H: Ord’ — Ord be ORM computable. Define

J1itfdv<aH(a,v,F(v))=1
F(&)_{ 0 else

Then F': Ord — Ord is ORM computable.
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A recursion theorem

Flao)=1ift d<a H(a,B,F(B))=1

///\
\ " //\\
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F0)  F(9)
[\



Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

A recursion theorem
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A recursion theorem

F(a)
T
F(0) F(1) .. F(3)
| // N
F(0)  F(0) F(1) ... F(~
| |
F(0) (

— &

F
/

Search for a good path using a stack F(«)?, F(3)?
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)
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A recursion theorem

Code the stack ay> a1 > ... > a,,_1 into one register

Ry= 3%+ 3% 4 . 4 3024 301,
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The constructible model L
Kurt Godel defined the following model of the axioms of set theory
o LO — @

e [,.1=the collection of subsets of L, which are first order
definable in the structure (L,, € ) with parameters

e L,=U,., Lo for limit ordinals v

¢ L= UozEOrd LO‘
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The constructible model L

\ L= L,
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The constructible model L

\ I |
L=\) L,
\\ // L | F
L,
x\ i 1 oa
| /
\ [
\\
La = 387
Fla)=1

iff 36 <o H(a, 8,F(f)) =1
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The constructible model L

Theorem (_, Siders) A set X of ordinals is ORM computable iff
X €L, 1e. if X is constructible.

Proof. (— ) Any ORM computation can be carried out inside the
model L, hence X € L.

(<) One can code iterated definability and the L,-hierarchy into
the ordinals so that the associated operations become ORM com-
putable. So constructible sets of ordinals are ORM computable.
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The constructible model L

o (Godel’s Axiom of Constructibility can be reformulated as:
every set of ordinals is ORM computable

e One can use the computability perspective to prove the

Generalised Continuum Hypothesis and other principles in
L

e From a universal ORM one can define a “Silver machine”
which allows to prove Jensen’s finestructural principles in

L
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a-(3-Register machines, space «, time [

Ry€ea
Control Riea
Program
States
R, €

Time
>

0 1 w w—+1 Nl
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a-(3-Register machines

e w-w-machines are classical register machines

e w-Ord-machines are register versions of the Infinite Time
Turing Machines (using adequate limit operations)

e for o admissible, a-a-computability corresponds to a-
recursion theory (Sacks et al)
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a-(3-Register machines

Register machines

space w

space admissible «

space Ord

admissible a

(v recursion theory)
computable =

A (L,) | _, Seyfferth]

time w standard register - -
machine
computable = AY

time ? « register machine -

time Ord

[TRM

Infinite time register
machine computable

— ngKﬂP(w)
|, GiE 2009

?

Ordinal register
machine
computable =
LNP(Ord)

|, Siders]
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a-(3-Turing machines

Time (3
7 /7 =
. /I\ \
Turing L7 ‘ \
|
Program | \
| \
| \
V l

I
Turing head
v

O(1(110]1{0]1|1|1}... Tape of length o
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a-(3-Turing machines

TURING space w space admissible « space Ord
time w standard TURING |- -

machine

computable = A
time ? « TURING machine |-

admissible «

(-recursion theory)
computable =

Aq(L,) | _, Seyfferth]

time Ord

[TTM
A} C computable
in real parameter
CA;

|Hamkins et all

?

Ordinal TURING
machine
computable =

LNP(Ord)
||




Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

a-(3-X machines

For a
e (classical) machine model X
e ordinal space «
e ordinal time (3

determine the class of computable sets.
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a-(3-X machines
For a

e (classical) machine model X

e ordinal space o

e ordinal time (3

determine the class of computable sets.

This gives a parametrised spectrum from classical computability
theory to constructibility theory, i.e. set theory.



Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

Infinite Time Register Machines, ITRM =
w-0Ord-register machines

e use “hardware” of classical register machines
e use arbitrary ordinal time

e use liminf rule with the proviso that at time ¢ register R,,
is “reset” to 0 if liminf,; R,,(s) = w
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Infinite Time Register Machines

Theorem () A real number a € “2 is computable by an ITRM iff

ac ngK :
Here wi™, wi™, ..., wS™ is the monotone enumeration of the first

admissible ordinals and their limit.
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Infinite Time Register Machines

Theorem (_, Miller) The set WO = {Z €“2|Z codes a wellorder}
is computable by an I'TRM.

N
/
|



Peter Koepke, Ordinal Computability, CiE 2009, Heidelberg, July 23, 2009

Infinite Time Register Machines
Look for an infinite branch in Z, keeping the finite attempts in a
register R, ; if there is an infinite branch, the register will overrun

and be reset to 0; otherwise it will not overrun and have a finite
limint.
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Infinite Time Register Machines

The hyperjump Z+€“2 of Z €“2 is defined by:

Zt(n) =11 {(i, j) € w x w|PZ(2"- 37) = 1} is a wellfounded

relation.

where Py, P, ... is a fixed recursive enumeration of all register pro-

grams and let P?: w — w be the partial function given by P, with
oracle Z. Then

Theorem. 0,07,07",...,0% ... are all ITRM computable.
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Infinite Time Register Machines

The

Theorem. 0,0%,07*, ..., 0% ... are all ITRM computable.
implies:

Theorem. Every real in L,cx is I'TRM computable.

Proof. Because every real in L ox is Turing computable from some
finite iterate 0% of the hyperjump.
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Infinite Time Register Machines

Theorem () If an ITRM with n registers stops, it will do so

before time wS™,.

Idea. If an I'TRM computation runs for 8; many steps then by a
downward Lowenheim-Skolem argument there is a closed
unbounded sets of ordinals < N; where the machine configuration
is the same as at N;. But then the machine will “cycle” after N; .

This argument can be refined to work at w$™, instead of ¥ .

So every I'TRM computable real a can be computed within L cx ;
ac L cx.
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Ordinal Computability

e analyses various classes of sets by atomic Turing or register
operations together with limit operations

e connects classical computability theory, higher recursion
theory, descriptive set theory, and constructibility theory

e still has many accessible open problems: certain combina-
tions of space v and time (3, other machine models

e has participated at CiE since the first conference at Ams-
terdam
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