Formal Mathematics and Controlled Natural
Language

Peter Koepke, University of Bonn, Germany

Mathematical Institute

Oberseminar Diskrete Optimierung

Bonn, February 14, 2011

universitétbonnl

The Godel completeness theorem

Uber die Vollstindigkeit des Logikkalkiils (1929)

1. Einleitung

Der Hauptgegenstand der folgenden Untersuchungen ist
der Beweis der Vollstandigkeit des in Russell, Principia
mathematica |...| und &hnlich in Hilbert-Ackermann,
Grundziige der theoretischen Logik |...| angegebenen
Axiomensystems des sogenannten engeren Funktio-
nenkalkiils. Dabei soll “Vollstandigkeit” bedeuten, dafs
jede im engeren Funktionenkalkiil ausdriickbare allgemein
giltige Formel |...] sich durch eine endliche Reihe formaler

Schliisse aus den Axiomen deduzieren lasst.

(Kurt Gédel, Doctoral Dissertation, Vienna 1929)

First order predicate logic

Var :: = vplvg|vof...|x |y |2]...

Func:: = ...

Term :: = Var|Func(Var, ..., Var)

Rel:: = ...

AtomForm:: = Rel(Term, ..., Term) | Term = Term

Form:: = AtomForm | Form — Form | L | V Var Form

A complete first order calculus

) I

I e Ty L, T oy
e A 0
L = L T o L Ve
. s0,FVMP,1fy§éfree(rLJ{V:EQO}),ngé ,

Fcpé

[t=t
[' t=t°

Formalizing mathematics in set theory
— N:0=0,1={0},2={0,1},...,n+1={0,..n},...
— Qg==(m,n)={{m},{m,n}}
— R:rc@Q (left half of a Dedekind cut)
— geometric space R p=(py,..., Pn_1)
— geometric objects: M CR"
— relations and functions as sets of tupels

— abstract topological spaces: (X,T) where T'CP(X)

Set theory has a first order formalization

— Gottlob Frege, Begriffsschrift, Grundgesetze der Arith-
metic

— Ernst Zermelo 1908
— Abraham Fraenkel ~1920
— Thoralf Skolem 1929

— Zermelo-Fraenkel set theory (ZF or ZFC)

Zermelo-Fraenkel axioms in first order logic
— Extensionality: VaVy(Vz(z€x - z€y) —r=y)

— Zermelo’s Aussonderungs schema:

Va,.. Ve, ,VedyVz(z ey z€x Nz, xq, ..., 1,))

— nfinity: dz(Jy(y€ex AVz—zey) AVy(yex—Jz(z€x A
Vw(weEzweyVw=y))))

What is mathematics?

— mathematics = set theory

— mathematics = first order logic + ZFC

— mathematical proofs = formal derivations from ZFC

Formal mathematics

Every logically true mathematical statement has a formal
derivation.

Every true mathematical statement has a formal derivation
within some (foundational) axiom system.

Every mathematical proof can be replaced by a formal deriva-
tion.

Mathematics can be in principle be carried out completely
formal (Formal mathematics).

A

© N o

—_
=

12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

(I)Gr
(I)Gr
(I)Gr
(I)Gr

0V E=1)
0V E=1
0V E=1

CvVpe =1y
CvVpe =1
Vp=¢€
Vp=¢€
—Vp=¢€
Yp=¢€
—Yp=¢€
—Yp=¢€
—Yp=¢€
Yp=¢€

—(nowe=eVyy=e)

—(nowe=eVyy=e)

—(nowge=eVyy=e)
Jup=(—ovge=eVyy=e)
—Jyp-(—ovpe=eVyy=e)

Vp=0vye

Vp=0vp€

——Jyy~(-ovpe=eVyy=e)
——Jyy~(-ovpe=eVyy=e)

—dug "o vge =y
1 0Vye =1
dvg - ovge= vy

CvVpe =1
ovge
(ve=owge)
U2

(2
= e)—
(U2 © g) s

Vop=07p€
Vop=07p€
Vp=¢€
(movpe=eVug=e)

0]
(- =e)—

U2

ovpe
(—vy=e)

U2
—oype=e
Vp=07p€
—oype=e

(movpe=eVug=e)
(movpe=eVug=e)
(movpe=eVug=e)
—(nowge=eVyy=e)
—Jyp-(—ovpe=eVyy=e)
—Jyp-(—ovpe=eVyy=e)
—Jyp-(—ovpe=eVyy=e)
—Jyp-(—ovpe=eVyy=e)

VR
VR
3S auf 2
WR auf 1,3

(=)
Sub auf 5

AR auf 6
KS auf 4,7
VR
VS auf9

VR

Sub auf 11

12
AR auf 8
KS auf 14
Vv S auf 15
FU auf 10,16
AR auf 17
VR
WR auf 18,19
JA auf 20
VR
FU auf 21,22

Formal derivations can be checked and produced auto-
matically

- derivations are formed by repeated applications of (simple)
syntactic rules

- whether a formal text is a derivation can (easily) be checked
algorithmically

Formal proofs - derivations
N. Bourbaki:

If formalized mathematics were as simple as the game of
chess, then once our chosen formalized language had been
described there would remain only the task of writing out our
proofs in this language, [...] But the matter is far from being as
simple as that, and no great experience is necessary to per-
ceive that such a project is absolutely unrealizable: the tiniest
proof at the beginnings of the Theory of Sets would already
require several hundreds of signs for its complete formaliza-
tion. [...] formalized mathematics cannot in practice be written
down in full, [...] We shall therefore very quickly abandon for-
malized mathematics, [...]

Computer-supported formal proofs
J. McCarthy:

Checking mathematical proofs is potentially one of the most
interesting and useful applications of automatic computers. ...
Proofs to be checked by computer may be briefer and easier to
write than the informal proofs acceptable to mathematicians.
This is because the computer can be asked to do much more
work to check each step than a human is willing to do, and this
permits longer and fewer steps.

McCarthy, J. "Computer Programs for Checking Mathematical Proofs," Proceedings of the Symposium in Pure Math, Recur-
sive Function Theory,Volume V, pages 219-228, AMS, Providence, RI, 1962.

Automatic proof checking
Automath (~1967)

N.G. de Bruijn

From the Automath formalization of E. Landau, Grundlagen der
Analysis, 1930 by L. S. van Benthem Jutting, 1979:

L UL UL LULEULIUNY D VLIV LI £ LU WUA/UL ULl IV IULIIUL IV L)L UL

Buchstabe iiblich auf Grund der
Definition 73:

i =10, 1].
Satz 300:
17 = —1.
Beweis:
[0-0-1-1,0-1+1-0]

ii = [0, 1][0, 1] =
= [-1,0] = 1.

Satz 301: Fir reelle uy, us ist

uy + ’U,Qi = [Ula UQ].

ic:=pli(0,1rl) :complex

+10300
tl:=tsisl2a(0,1rl1,0,1rl):is(ts(ic,ic),pli (mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)),pl"r" (ts"r" (0,1rl),
ts"r" (1rl,0))))

t2:=tris(real,mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)) , mO"r" (ts"r" (1lrl,1rl)) ,mO"r" (1rl),plO01l (ts"r" (0,0),
mO"r" (ts"r" (1rl,1rl)),ts01(0,0,refis(real,0))),ismO"r" (ts"r" (1rl,1rl),1rl,satz195(1rl))):

is"r" (mn"r" (ts"r"(0,0),ts"r" (1rl,1rl)),mO"r" (1rl))

t3:=tris(real,pl"r" (tg"r" (0,1rl),ts"r"(1xrl,0)),ts"r"(1rl,0),0,pl01l (ts"xr"(0,1rl),ts"r" (1rl,0),
ts01(0,1rl, refis(real,0))),ts02(1lrl,0,refis(real,0))) :is"r" (pl"r" (ts"r" (0,1rl),ts"r" (1r1,0)),0)
td:=isrecx12 (mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)),mO"r" (1rl) ,pl"r" (ts"r" (0,1rl),
ts"r"(1rl1,0)),0,t2,t3) :is(pli (mn"r" (ts"r"(0,0),ts"r" (1rl,1rl)),

pl"r" (ts"r" (0,1rl) ,ts"r"(1xrl,0))),cofrl (mO"xr" (1lrl)))
t5:=gatz2987j (1rl) :is (cofrl (mO"r" (1rl)) ,m0 (1lc))

-10300

satz2300:=tr3is(cx,ts(ic,ic),pli (mn"r" (ts"r" (0,0),ts"r"(1rl,1rl)),

pl"r" (ts"r"(0,1rl),ts"r"(1rl,0))),cofrl (mO"r" (1rl)),mO0(lc),tl™.10300",t4".10300",t5".10300"):
is(ts(ic,ic),m0(1lc))

The Mizar system (1973 -) of Andrzej Trybulec

Language modeled after
“mathematical vernacular”

Natural deduction style
Automatic proof checker

Large mathematical library

www.mizar.org

MIZAR example: Proof of the Godel completeness theorem by
Patrick Braselmann and PK

theorem
still not-bound _in X is finite & X |= p implies X |- p
proot
assume
Al: still not-bound in X 1is finite;
assume
A2: X |= p;
assume
A3: not X |- p;
reconsider Y = X \/ {'not’ p} as Subset of CQC-WFF;
Ad: still not-bound in Y is finite by Al,Th36;
Y is Consistent by A3,HENMODEL:9;
then ex Cz,JH1 st (JH1l,valH |= Y) by A4,Th34;
hence contradiction by A2,Th37;
end;

Formal mathematics systems
— proof checking < automatic proving

— Classical logic < non-classical, constructive, intuition-
Istic logic

— general purpose <> specialized
— natural deduction style <> resolution/unification style

— readability +» machine orientated

Provers of the world

Of “The Hundred Greatest Theorems” list, there are formaliza-
tions in the following systems (see Freek Wiedijk):

— 76 in HOL Light (higher order logic, John Harrison)

— 51 in Mizar (classical)

— 49 in Coq (type theory, calculus of inductive definitions
— 46 in Isabelle (weak type theory, various logics)

— 42 in ProofPower

Some “big”’ formalizations
— Four Colour Theorem (Georges Gonthier, Coq)

— Prime Number Theorem, “elementary” proof (Jeremy
Avigad, Isabelle)

— Prime Number Theorem, analytic proof (John Harrison,
HOL Light)

— work in progress: Flyspeck Project (Formal Proof of the
Kepler Conjecture) (Tom Hales, various systems)

— Jordan Curve Theorem (Tom Hales, HOL Light)

Some “big”’ formalizations

— Correctness of arithmetical algorithms like division,
square root, transcendental functions (hardware and
software)

— In particular floating point arithmetic

— Correctness of (RISC) microprocessors

— Software for driverless Paris Metro Line 14

Natural proofs
— directed at human readers
— use human notions, intuitions, argumentations
— use natural language
— refer to other human proofs
— have to be compact, surveyable (Ludwig Wittgenstein)

— have a certain granularity, leaving out details and
implicit knowledge

Can formal proofs be made

more natural?

The Naproche project: Natural language proof checking

studies the syntax and semantics of the language of
proofs, emphasizing natural language and natural argu-
mentation aspects, also in relation to formal mathe-
matics

models natural language proofs using computer-sup-
ported methods of formal linguistics and formal logic

joint work with Bernhard Schroder, linguistics; Bonn,
Essen, Cologne; www.naproche.net

development of a mathematical authoring system with a
LATEX-quality graphical interface

The Naproche system

— To devise a strictly formal system for mathematics,
implemented by computer, whose input language is an
extensive part of the common mathematical language,
and whose proof style is close to proof styles found in
the mathematical literature.

Mathematical statements

“1 divides every integer.” +— “Fido chases every cat.”

Linguistic analysis of sentences
“Fido chases every cat.”

S: all(Y,cat(Y),chases(fido,Y))

_— /

NP: fido VP: all(Y,cat(Y),chases(X,Y))

_— N

V:chases(X,Y) NP:all(Y,cat(Y),...)

Fido chases every cat.

VY (cat(Y') — chases(fido, Y)).

Linguistic analysis of sentences
“1 divides every integer.”

S: all(Y,integer(Y),divides(1,Y))

_— /

NP: 1 VP: all(Y,integer(Y),divides(X,Y))
V: dividm NP: aII(Y,i\nteger(Y),...)
D: aII(...,{,...) N:}teger(Y)
1 divides every integer.

VY (integer(Y) — 1|Y).

Linguistic analysis of sentences

Formal grammars, e.g., Phrase Structure Grammar

Standard techniques of computational linguistics like
tokenizing

(Parsing mathematical notation like % and com-

bining with the natural language parsing?)

Less ambiguities in natural mathematical language than
In general natural language: “a man loves a woman”
versus “a negative number is smaller than a positive
number”; in case of ambiguity a mathematician would
explicitely write the quantifiers.

Mathematical texts

. Then 2.

AV

A farmer owns a donkey. He beats it.

Logical references, premises <> pronouns /nouns

Linguistic analysis of texts

Discourse representation theory (Hans Kamp)

farmer , donkey

owns(farmer,donkey)

he , it

beats(he,it)

Af, d(owns(f,d) Abeats(f,d))

Linguistic analysis of texts

Natural deduction (Lukasievicz, Gentzen) has a similar box
structure

Proof representation structures

9]
Drefs: —
Mrefs: —
Conds: @ _CODSGq(l}
Drefs: 1,2,3 Drefs: —
Mrefs: X,y =(X,y) == Mrefs: —
Conds: math id(1,x) Conds: 7
math id(2,y) ﬂ
math id(3,=(x,y)) Drefs: 4
holds(3) Mrefs: =(y,x)
Rrefs: — Conds: math id(4,=(y,x))
holds(4)
Rrefs: —
Rrefs: —

Rrefs: —

Natural proofs and natural argumentation
— (what is a proof?)
— natural proofs are mathematical argumentations

— techniques from the linguistics of argumentation may be
used; argumentations are sometimes analyzed by
formal logical tools

— Proof Representation Structures can be translated into
input for formal mathematics

Layers of the Naproche system

1 Standard editor or web editor
TeX-style input text
T Natural language processing (NLP)
Proof representation structure (PRS)
I First-order translation
First-order logic format (TPTP)
T Proof checker or automatic theorem prover (ATP)

“Accepted”’/*Not accepted”, with error messages

The Naproche system:

"j S WETER RN AR

By

s swith univer

Symbols
Let $x=y$. Then $y=x$.

Menu

home

members

web interface

examples

Burali-Forti
paradox

Group Theory

Landau

tutorial

formal
mathematics create PDF @ Logical Check | Debug-Mode off

seminar

The Naproche system

create PDF Qj Logical Check @ Debug-Mode off

Let $x=y$.
Then $y=x$.

Building PRS View PRS Time spent: 0 sec
H Creating Proof Obligations View PRS Graph Time spent: 0 sec

Discharging Proof Obligations
Logical check successful

1 theorem proved

0 proofs failed

0 inconsistencies found

Time spent: 0 sec

Creating Statistics Final Stats Time spent: 0 sec

The Naproche system
Proof obligation for y = x:
fof('holds(2, 4, 0)’, conjecture, vd2 = vd1).

fof(’holds(1, 3, 0)’, axiom, vd1 = vd2).

The Naproche system

create PDF Qj Logical Check @ Debug-Mode off

Let $x=y$.
Then $y=x$.

Building PRS View PRS Time spent: 0 sec
H Creating Proof Obligations View PRS Graph Time spent: 0 sec

Discharging Proof Obligations
Logical check successful

1 theorem proved

0 proofs failed

0 inconsistencies found

Time spent: 0 sec

Creating Statistics Final Stats Time spent: 0 sec

The Naproche system

Axiom 1.

For all x, y, $z%, $(x*y)*z=x*(y*2)$.

Axiom 2.
For all $x3$, $1*x=x$ and $x*1=x$.

Axiom 3.
For all x, $x*f(x)=1$ and $f(x)*x=13.

Lemma 1.
If $u*x=x9$ then $u=189.

Proof.

Suppose that $u*x=x$.

Then $(u*x)*f(x)=x*f(x)$. By axiom 1, $u*(x*f(x))=x*f(x)$. So by axiom 3 $u*1=18$.
Then $u=1$ by axiom 2. Qed.

The Naproche system

Lemma 2.
If $x*y=1% then $y=f(x)$.

Proof.

Assume $x*y=13.

Then $f(x)*(x*y)=f(x)*1$, i.e. $(f(x)*x)*y=f(x)$. Hence $1*y=f(x)$, i.e. Py=f(x)$.
Qed.

Theorem 1.

$t(x*y)=t(y)*f(x)$.

Proof.

Let $u=(x*y)*(f(y)*f(x))$.

Then $u=x*((y*f(y))*f(x))$ by axiom 1. So $u=x*(1*f(x))=x*f(x)=1$.
*(f(y)*f(x))=f(x*

Thus $(x*
Qed.

y)* (f(y)=1$. Hence $(f(y)*f(x))=f(x*y)$ by lemma 2.

The Naproche system

Axiom 1. Forall z, y, z, (v *xy) * 2 =x % (y * 2).
Axiom 2. Forall z, 1xz=xand z x 1 = x.
Axiom 3. Forall z, z* f(x)=1and f(x)xx=1.
Lemma 1. If uxx =2 then u=1.

Proof. Suppose that uxz=x. Then (uxx)* f(x)=x* f(x). By axiom 1, u* (x * f(x))=x *
f(x). So by axiom 3 ux1=1. Then v =1 by axiom 2. Qed.

Lemma 2. If xxy=1then y= f(z).

Proof. Assume zx y=1. Then f(z)* (x*xy)= f(z)*x1,i.e. (f(x)*z)*xy= f(x). Hence 1 *
y=f(z),i.e. y= f(x). Qed.
Theorem 1. f(zxy)= f(y)* f(z).

Proof. Let u=(x*xy)x (f(y)* f(x)). Thenu=xx ((y* f(y)) * f(z)) by axiom 1. So u = x *
(1 fz)) =z * f(z) =1. Thus (z* y) * (f(y) * f(x)) = 1. Hence (f(y) * f(z)) = f(x +y) by

lemma 2. Qed.

The Naproche system

Building PRS View PRS Time spent: 4 sec

Creating Proof Obligations View PRS Graph Time spent: 0 sec
Discharging Proof Obligations Logical check successful

17 theorems proved

0 proofs failed

0 inconsistencies found

Time spent: 3 sec

Creating Statistics Final Stats Time spent: 0 sec

Components of the Naproche system: linguistic analysis

standard analysis by a Prolog Definite Clause Grammar
(DCQ), the grammar defines a controlled natural lan-
guage for mathematics (CNL), i.e. a formal subset of the
common mathematical language

translation into a formal semantics (without ambiguity)

Components of the Naproche system: linguistic analysis

— formal semantics: proof representation structures
(PRS), extending discourse representation structures
(DRS)

— DRS: tool for anaphora resolution (Let z be a set. It
IS ...) and for interpretation of natural language quantifi-
cation (Every prime number is positive; a prime number
IS positive)

— PRS, moreover, represent global text structurings: The-
orem / Proof, introductions and retractions of assump-
tions

Components of the Naproche system: Checking logical
correctness

— translating the PRS conditions into the first-order format
TPTP (Thousands of Problems for Theorem Provers)

— generate relevant premises for every condition

— automatic theorem prover (ATP) used to prove every
condition from its relevant premises; strength of the ATP
may allow to bridge “gaps” in the proof

— proof is accepted if ATP can prove every condition

Automatic theorem provers (ATPSs)

— First order theorem provers, usully based on resolution,
superposition, normal forms and code-optimization

— Examples: Otter, SPASS, Vampire, ...

— Development driven by yearly competitions (CASC =
CADE ATP System Competition)

E. Landau, Grundlagen der Analysis, 1930: Theorem 30

Theorem 30 (Distributive Law) : . _
i iy g Theorem 30: Forall z,y, 2z, z % (y + 2) = (z *

Preliminary Remark: The formula y) + (iU * Z)

(y+2)z=yx + zx . /
Proof: Fix z, y. x * D=xxy =z *
which results from Theorem 30 and Theorem 29, and similar 00 Y (y +) Yy Yy +

analogues later on, need not be specifically formulated as theorems, xr = (l’ * y) -+ (l’ * 1) .
nor even be set down.

Proof: Fix r and y, and let M be the set of all z for which the —
assertion holds true. Now Suppose x * (y + Z) («T * y) + (*T * Z)

I) z(y+1)=zx¢y =zy+zx=zy+zx-1; Then:U>I<(y+2'):$*((y+2)/)=(x*(y+
o) e =y + () bo=(eey)+
2y +2) = 2y +12, (z*2)+x)=(x*xy)+ (zx2).

hence
z(y+5) = z(y+49)) = z(y+a)+a = (zy+z2)+2 Thus by induction, for all 2, T % (y + Z) _ (33 «
= zy+(2e4+2z) = zy+ 22,
so that z’ belongs to M. y) + (ZU * Z) Qed.

Therefore, the assertion always holds.

Chapter 1 from Landau in Naproche

by Merlin Carl, Marcos Cramer, Daniel Khlwein
February 14, 2011

Abstract

This is a reformulation of the first chapter of Landau’s Grundlagen der Analysis in the Controlled Natural Language of Naproche.
Talk about sets is still avoided. One consequence of this is that Axiom 5 (the induction axiom) cannot be formulated; instead we use
an induction proof method.

Axiom 3: For every z, 2’ # 1.
Axiom 4: If x'=1y’, then z=y.

Theorem 1: If z# y then 2’ # y'.
Proof:
Assume that = # y and 2’ =y’. Then by axiom 4, z =y. Qed.

Theorem 2: For all z 2’ # =.
Proof:
By axiom 3, 1'# 1. Suppose z’# z. Then by theorem 1, (z’)’# z’. Thus by induction, for all x 2’ + z. Qed.

Theorem 3: If z# 1 then there is a v such that z =’

Proof:

If 11 then there is a w such that 1 =",

Assume z’# 1. If u=2x then 2’ =u'. So there is a u such that z' =",
Thus by induction, if x # 1 then there is a u such that x =u'. Qed.

Definition 1:

Define + recursively:

r+1=2x"

r+y'=(x+y).

Theorem 5: Forall z, v, z, (x+y)+2=x+ (y + 2).
Proof:

Fix z, y.

(+y)+l=(@+y)=z+y'=z+(y+1).

Assume that (z+y)+z=a2+(y+2). Then (z+y)+2'=(z+y)+2) =@+ (y+2) =+ (y+2) =+ (y+2). So (x+y) +
Z=x+(y+2).

Thus by induction, for all z, (z +y) +z=z+ (y + 2). Qed.

Lemmada: Forall y, 1+y=1v"

Proof:

By definition 1, 1 +1=1".

Suppose 1+ y=1y’. Then by definition 1, 1+¢y'=(1+y)". So 1+ "= (v')".
Thus by induction, for all y 1 +y=1'. Qed.

Current projects
— Formalizing Landau

— Rewriting and updating the Naproche software for
greater modularity and more linguistic variants

— Formalizing Euclid’s Elements, book 17?

— Putting a Naproche layer on the formal proof of the
Godel completeness theorem

Possible applications

Natural language interfaces to formal mathematics

— Mathematical authoring and checking tools

writing texts that are simultaneously acceptable by

human readers and formal mathematics systems
(“Logic for men and machines”)

— Tutorial applications: teaching how to prove

General issues

— Linguistics: construction and analysis of a mathematical
language with a definite first order semantics

— Can the gap between natural proofs and formal deriva-
tions be narrowed

— Philosophy of mathematics: what is a mathematical
proof?

— there are some natural(ly looking) proofs that are fully
formal with respect to the Naproche system

Thank You!

