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What is a mathematical proof?



What is a mathematical proof?
Mathematical logic:

A proof is a formal derivation in a (first-order) calculus



The Godel completeness theorem

(Doctoral Dissertation, Vienna 1929)
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The Godel completeness theorem

(Doctoral Dissertation, Vienna 1929)



The Godel completeness theorem

Every logically true mathematical statement has a formal
derivation.
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The Godel completeness theorem

Every logically true mathematical statement has a formal
derivation.

Every true mathematical statement has a formal derivation
within some (foundational) axiom system.

Every mathematical proof can be replaced by a formal deriva-
tion.

Mathematics can be in principle be carried out completely
formal (Formal mathematics).



Pythagoras theorem




Pythagoras theorem




Graphical proofs?



Graphical proofs?

63=657?




Theorem. In a right-angled triangle (A BC) the square on the
hypotenuse (A B) is equal to the sum of the squares on the
other two sides (AC, BC).



Dem.---On the sides A B, BC, C' A describe squares [xlvi.]. Draw C' L parallel to A G. Join CG, B K. Then
because the angle A C B is right (hyp.), and A C H is right, being the angle of a square, the sum of the
angles AC B, AC H is two right angles; therefore B C, C' H are in the same right line [xiv.]. In like manner
AC, CD are in the same right line. Again, because BAG is the angle of a square [itis a right angle : in like
manner C' A K is a right angle. Hence B A G is equal to C' A K: to each add B A C, and we get the angle
C AG equal to K A B. Again, since B G and C' K are squares, B Ais equalto AG, and C Ato A K. Hence
the two triangles C A G, K A B have the sides C'A, A G in one respectively equal to the sides K A, A B in the
other, and the contained angles C' A G, K A B also equal. Therefore [iv.] the triangles are equal; but the par-
allelogram A L is double of the triangle C' A G [xli.], because they are on the same base A G, and between
the same parallels A G and C' L. In like manner the parallelogram A H is double of the triangle K A B,
because they are on the same base A K, and between the same parallels A K and B H; and since doubles
of equal things are equal (Axiom vi.), the parallelogram A L is equal to A H. In like manner it can be proved
that the parallelogram B L is equal to B D. Hence the whole square A F' is equal to the sum of the two

squares A H and B D.
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Formal proofs - derivations
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Formal proofs - derivations

- derivations are formed by repeated applications of (simple)
syntactic rules

- whether a formal text is a derivation can (easily) be checked
algorithmically



Formal proofs - derivations
N. Bourbaki:

If formalized mathematics were as simple as the game of
chess, then once our chosen formalized language had been
described there would remain only the task of writing out our
proofs in this language, [...] But the matter is far from being as
simple as that, and no great experience is necessary to per-
ceive that such a project is absolutely unrealizable: the tiniest
proof at the beginnings of the Theory of Sets would already
require several hundreds of signs for its complete formaliza-
tion. [...] formalized mathematics cannot in practice be written
down in full, [...] We shall therefore very quickly abandon for-
malized mathematics, [...]



Formal proofs
Saunders Mac Lane:

As to precision, we have now stated an absolute standard of
rigor: A mathematical proof is rigorous when it is (or could be)
written out in the first-order predicate language L( € ) as a
sequence of inferences from the axioms ZFC, each inference
made according to one of the stated rules. [...] When a proof is
in doubt, its repair is usually a partial approximation to the fully
formal version.



Computer-supported formal proofs
J. McCarthy:

Checking mathematical proofs is potentially one of the most
interesting and useful applications of automatic computers. ...
Proofs to be checked by computer may be briefer and easier to
write than the informal proofs acceptable to mathematicians.
This is because the computer can be asked to do much more
work to check each step than a human is willing to do, and this
permits longer and fewer steps.

McCarthy, J. "Computer Programs for Checking Mathematical Proofs," Proceedings of the Symposium in Pure Math, Recur-
sive Function Theory,Volume V, pages 219-228, AMS, Providence, RI, 1962.



Automatic proof checker
Automath (~1967)

N.G. de Bruijn



From the Automath formalization of E. Landau, Grundlagen der
Analysis, 1930
by L. S. van Benthem Jutting, 1979:



ic:=pli(0,1rl) :complex

+10300
tl:=tsisl2a(0,1rl1,0,1rl):is(ts(ic,ic),pli (mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)),pl"r" (ts"r" (0,1rl),
ts"r" (1rl,0))))

t2:=tris(real,mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)) , mO"r" (ts"r" (1lrl,1rl)) ,mO"r" (1rl),plO01l (ts"r" (0,0),
mO"r" (ts"r" (1rl,1rl)),ts01(0,0,refis(real,0))),ismO"r" (ts"r" (1rl,1rl),1rl,satz195(1rl))):

is"r" (mn"r" (ts"r"(0,0),ts"r" (1rl,1rl)),mO"r" (1rl))

t3:=tris(real,pl"r" (tg"r" (0,1rl),ts"r"(1xrl,0)),ts"r"(1rl,0),0,pl01l (ts"xr"(0,1rl),ts"r" (1rl,0),
ts01(0,1rl, refis(real,0))),ts02(1lrl,0,refis(real,0))) :is"r" (pl"r" (ts"r" (0,1rl),ts"r" (1r1,0)),0)
td:=isrecx12 (mn"r" (ts"r"(0,0),ts"r"(1rl,1rl)),mO"r" (1rl) ,pl"r" (ts"r" (0,1rl),
ts"r"(1rl1,0)),0,t2,t3) :is(pli (mn"r" (ts"r"(0,0),ts"r" (1rl,1rl)),

pl"r" (ts"r" (0,1rl) ,ts"r"(1xrl,0))),cofrl (mO"xr" (1lrl)))
t5:=gatz2987j (1rl) :is (cofrl (mO"r" (1rl)) ,m0 (1lc))

-10300

satz2300:=tr3is(cx,ts(ic,ic),pli (mn"r" (ts"r" (0,0),ts"r"(1rl,1rl)),

pl"r" (ts"r"(0,1rl),ts"r"(1rl,0))),cofrl (mO"r" (1rl)),mO0(lc),tl™.10300",t4".10300",t5".10300"):
is(ts(ic,ic),m0(1lc))



The MIZAR system (1973 - ) of Andrzej Trybulec

Language modeled after
“mathematical vernacular”

Natural deduction style
Automatic proof checker
Large mathematical library

Journal
Formalized Mathematics

www.mizar.org




MIZAR example: Proof of Pythagoras

theorem for pl,p2,p3 st pl<>p2 & pP3<>p2 &
(angle(pl,p2,p3)=PI/2 or angle(pl,p2,p3)=3/2*PI) holds
(| .pl-p2.|A2+]|.p3-p2.|A2=|.pl-p3.|A2
proof let pl,p2,p3; assume Al: pl<>p2 & pP3<>p2 &
(angle(pl,p2,p3)=PI/2 or angle(pl,p2,p3)=3/2*PI);
then A2: euc2cpx(pl)<> euc2cpx(p2) by Thé6;
A3: euc2cpx(p3)<> euc2cpx(p2) by Al,Thé6;
Ad: euc2cpx(pl) -euc2cpx(p2)=euc2cpx(pl-p2) by Thl9;
A5: euc2cpx (p3) -euc2cpx(p2)=euc2cpx (p3-p2) by Thl9;
A6: euc2cpx(pl) -euc2cpx (p3)=euc2cpx(pl-p3) by Thl9;
A7: angle(pl,p2,p3)=angle(euc2cpx(pl),euc2cpx(p2),euc22cpx(p3))
by Defd;

A8: |.eucl2cpx(pl-p2).|=|.pl-p2.| by Th31l;
A9: |.eucl2cpx(p3-p2).|=|.p3-p2.| by Th31l;
| .euc2cpx (pl-p3).|=].pl-p3.| by Th31l;

hence thesis by Al,A2,A3,A4,A5,A6,A7,A8,A9,COMPLEX2:91;
end;



Derivations

- (Euclid)

- (Hilbert-style) calculi
- Automath

- MIZAR



What is a mathematical proof?

description of the/some mathematical “reality”?

argumentative text about the/some mathemat-
ical “reality”?

argumentative text within some system of initial
assumptions (axioms)?

Wittgenstein: ...... ?
abbreviation for some (long) formal derivation?
recipe for building a formal derivation if required?

a formal derivation in some very rich formal system
(Montague: English as a formal language)?



Jody Azzouni: The derivation-indicator view of mathemat-
ical practice

ABSTRACT. A version of Formalism is vindicated: Ordinary
mathematical proofs indicate (one or another) mechanically
checkable derivation of theorems from the assumptions those
ordinary mathematical proofs presuppose. The indicator view
explains why mathematicians agree so readily on results
established by proofs in ordinary language that are (palpably)
not mechanically checkable. Mechanically checkable deriva-
tions in this way structure ordinary mathematical practice
without its being the case that ordinary mathematical proofs
can be ‘reduced to’ such derivations. In this way, one threat to
formalist-style positions is removed: Platonic objects aren’t
needed to explain how mathematicians understand the import
of ordinary mathematical proofs. (Philosophia Mathematica,
2004)



Derivation-indication
N. Bourbaki:

If formalized mathematics were as simple as the game of
chess, ...

... there would remain only the task of writing out our proofs in
this language, ...



Derivation-indication
Saunders Mac Lane:

As to precision, we have now stated an absolute standard of
rigor: A mathematical proof is rigorous when it is (or could be)
written out in the first-order predicate language L( € ) as a
sequence of inferences from the axioms ZFC, each inference
made according to one of the stated rules. [...] When a proof is
iIn doubt, its repair is usually a partial approximation to the
fully formal version.



Derivation-indication

- Mathematicians agree that proofs can be written out in
increasingly formal detall

- This leads to a fully formal derivation after some (long) finite
time

- The indicator function lies mainly in the natural language
parts of proofs

- Can one identify indicators by natural language processing?

- Derivations may be derivations performed by an Automatic
Theorem Prover (ATP).



The Naproche project: Natural language proof checking

studies the syntax and semantics of the language of
proofs, emphasizing natural language and natural argu-
mentation aspects

models natural language proofs using computer-sup-
ported methods of formal linguistics and formal logic

“reverse engineering” approach to derivation-indication

joint work with Bernhard Schroder, linguistics; Bonn,
Essen, Cologne; www.naproche.net

development of a mathematical authoring system with a
LATEX-quality graphical interface



The Naproche project: Natural language proof checking

To devise a strictly formal system for mathematics,
implemented by computer, whose input language is an
extensive part of the common mathematical language,
and whose proof style is close to proof styles found in
the mathematical literature.



Mathematical statements

“1 divides every integer.” +— “Fido chases every cat.”



Linguistic analysis
“Fido chases every cat.”

S: all(Y,cat(Y),chases(fido,Y))

_— /

NP: fido VP: all(Y,cat(Y),chases(X,Y))

_— N

V:chases(X,Y) NP:all(Y,cat(Y),...)

Fido chases every cat.

VY (cat(Y') — chases(fido, Y)).



Linguistic analysis
“1 divides every integer.”

S: all(Y,integer(Y),divides(1,Y))

_— /

NP: 1 VP: all(Y,integer(Y),divides(X,Y))

_— N\

V:divides(X,Y)  NP:all(Y,integer(Y),...)

N

D: all(...,...,...) N:integer(Y)

1 divides every integer.

VY (integer(Y) — 1]Y).



Layers of the Naproche system:
1l Standard or web editor
TeX-style input text
T Natural language processing (NLP)
Proof representation structure (PRS)
1 First-order translation
First-order logic format (TPTP)

T Proof checker or automatic theorem prover
(ATP)

“Accepted”’/*Not accepted”, with error messages



E. Landau, Grundlagen der Analysis, 1930: Theorem 30




Components of the Naproche system: linguistic analysis

standard analysis by a Prolog Definite Clause Grammar
(DCQ), the grammar defines a controlled natural lan-
guage for mathematics (CNL), i.e. a formal subset of the
common mathematical language

translation into a formal semantics (without ambiguity)



Components of the Naproche system: linguistic analysis

— formal semantics: proof representation structures
(PRS), extending discourse representation structures
(DRS)

— DRS: tool for anaphor resolution (Let  be a set. ltis ...)
and for interpretation of natural language quantification
(Every prime number is positive; a prime number is pos-
itive)

— PRS, moreover, represent global text structurings: The-
orem / Proof, introductions and retractions of assump-
tions



Components of the Naproche system: Checking logical
correctness

translating the PRS conditions into some first-order
format

use TPTP-format (Thousands of Problems for Theorem
Provers)

generate relevant premises for every condition

automatic theorem prover (ATP) used to prove every
condition from its relevant premises

proof is accepted if ATP can prove every condition

feedback of success/error messages



Resulis

— The Naproche system allows natural reformulation of
(simple) mathematical texts

— some example texts and parts of Landau, Foundations
of Analysis have been reformulated and checked



Chapter 1 from Landau in Naproche

by Merlin Carl, Marcos Cramer, Daniel Khlwein
September 15, 2010

Abstract

This is a reformulation of the first chapter of Landau’s Grundlagen der Analysis in the Controlled Natural Language of Naproche.
Talk about sets is still avoided. One consequence of this is that Axiom 5 (the induction axiom) cannot be formulated; instead we use
an induction proof method.

Axiom 3: For every z, 2’ # 1.
Axiom 4: If x'=1y’, then z=y.

Theorem 1: If z# y then 2’ # y'.
Proof:
Assume that = # y and 2’ =y’. Then by axiom 4, z =y. Qed.



Theorem 2: For all z 2’ # =.
Proof:
By axiom 3, 1'# 1. Suppose z’# z. Then by theorem 1, (z’)’# z’. Thus by induction, for all x 2’ + z. Qed.

Theorem 3: If z# 1 then there is a v such that z =’

Proof:

If 11 then there is a w such that 1 =",

Assume z’# 1. If u=2x then 2’ =u'. So there is a u such that z' =",
Thus by induction, if x # 1 then there is a u such that x =u'. Qed.

Definition 1:

Define + recursively:

r+1=2x"

r+y'=(x+y).

Theorem 5: Forall z, v, z, (x+y)+2=x+ (y + 2).
Proof:

Fix z, y.

(+y)+l=(@+y)=z+y'=z+(y+1).

Assume that (z+y)+z=a2+(y+2). Then (z+y)+2'=(z+y)+2) =@+ (y+2) =+ (y+2) =+ (y+2). So (x+y) +
Z=x+(y+2).

Thus by induction, for all z, (z +y) +z=z+ (y + 2). Qed.

Lemmada: Forall y, 1+y=1v"

Proof:

By definition 1, 1 +1=1".

Suppose 1+ y=1y’. Then by definition 1, 1+¢y'=(1+y)". So 1+ "= (v')".
Thus by induction, for all y 1 +y=1'. Qed.



Possible applications

Natural language interfaces to formal mathematics

— Mathematical authoring and checking tools

writing texts that are simultaneously acceptable by

human readers and formal mathematics systems
(“Logic for men and machines”)

— Tutorial applications: teaching how to prove



General issues

Naproche attempts to implement parts of the derivation-
indication approach to proofs

natural language components serve as indicators

there are natural(ly looking) proofs that are fully formal
with respect to the Naproche system

this defines a “fortified formalism”, using linguistic
methods and computer implementations, which allows
to view some natural proofs as fully formal

can a “fortified formalism” help to mediate between
the “two streams” in the philosophy of mathematics (for-
malistic / naturalistic)?



Thank You!



