


A finestructural refinement of the J-hierarchy for extender
models

Peter Koepke, University of Bonn

We interpolate successive levels JZ and Jerl of JENSEN’s J-hierarchy for the extender model L¥ by an w-sequence of interme-
diate levels

E E E E E E
Ja :Fw~ang-a+lng-a+2g---g U Fw-aJrn: a+t1-

n<w

Each Ff is the underlying set of a structure _7-'5 = (F,’YE, €, E, ...) containing a SKOLEM function and other basic constructible
operations. The next level F,‘YEH consists of all subsets of Ff which are definable without quantifiers over the structure F 5 . The
fine hierarchy (ff)veord satisfies a strong condensation theorem and other finestructural laws. One can define finestructural
extensions (ultrapowers) of _7-'5 by extenders in E. If all proper initial segments of F 5 are finestructurally sound then this
inherits to the finestructural extension. Higher core model theory can be based on the new fine structure theory.
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Extender models

LF = Uucon LE | where E is a sequence E = (Ej) of extenders.
Es=0or Es: (LY, €)—(L§,€) is an extender, i.e.,
—  FEs|k=id and Es(k) > k for some critical point k <~y
— LY=(H. )W EZFC

—  Ey(LE e)—(L§,€) is elementary and cofinal

—  (L¥,E;) is amenable, ie., Vo€ LE xNEsc L}



JENSEN-style finestructural analysis

LF= Uanrd LE Ua cOrd JE Consider Ej being a partial extender, i.e.,
— Pk )OJECJEandP( +1g§JE
—  P(r)NZ,(JE) CJE and P(k) N1 (JE) € I

—  P(r)N(JE)? C ¥ and P(k) N1 ((JE)™P) € JZ, where
(JEYmP = (J;E , ¥,-truth predicate,...) is an n-th reduct of J%

—  form ultrapower g, (JE)"P —x, Ult((JE)"?, Ey)
— iterate the ultrapower operation, taking direct limits at limits

JENSEN interpolates JZ C JE | by

TE= (0D (JE D (JEP D, T



A monotone and continuous interpolation

Interpolate JZ C JZ. | by

F F F F F F FE
Ja :fw-a gfw-a+1gfw-a+2g“- - U Fw-a—i—n:fw-a—i-w:t]a—l—l-

n<w

—  FPElhierarchy defined by quantifierfree definability

— FﬁE contain SKOLEM functions for quantifierfree formulas

— quantifierfree definability < boolean combinations of >:;-definability
— PR)NEFain CFY and P(k) N Flaini £ FY

— form a fine ultrapower 7, F.X ., — Ut(FE .., Es), ...



The fine hierarchy

Define (F%)acord recursively
Fo=(Fy, e, E,<" 1P, 5% RF D PF)

=)

- Assume F7 is defined. For quantifier-free p(vy, ..., Un—1,v,), B € FX define the inter-
pretation

IE(FE . P)={v, e FY|FEE (P, vn)} (1)
Let

a+1_{[E<FE7 ¥, P )’@(U()u .--,Un_l,?)n> qf7 ﬁ EFC?}



Define I” | FE,, to extend I” | F¥' and the assignments made in (1); in all other cases
set 1P(7)= 1.

The rank function: RP | FX D RF [ FF | and for yEFfH\Ff set
RE(y)=Fy .

The definition function: D¥ | FE., D DF | FE | and for y € FE, \ FE, D¥(y) is the
<c-least q.f. ¢ such that

y=TI"(Fy, ¢,p)
— E.
for some p € F}';

then let the parameter function PE(y) be the least such 7 in the lexicographical
wellordering induced by <¥ | FE.

The constructible wellorder: <¥ | FE, | endextends <¥ | F¥and for y, v’ € F£+1\F£

y <"y iff DP(y) <c D"(y'), or D¥(y)=D"(y’) and
PE(y) is <F-lexicographically smaller than PZ(y’).
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The SKOLEM function: S¥ | FE ., D S¥ | FE and for o(vy,...,vn_1) €Ly and 5 € FE
the <¥ -lexicographically minimal § € F¥ such that
SE(FE, ¢, 7)= FEE (7, q), if this exists;
1, else.

For all other arguments & € F.X,, \ FE¥ set S¥(Z)= 1.

For limit A <oo take a union of structures

Fi=J 7%

a<A



Hierarchy properties

a) ozéfy—>FaE§Ff
b) a<y—FYeFE
c¢) EFF is transitive
d) FFNOrd=~

e) U FE=LF

aeOrd ~ @

f) Fcqua:ch
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Vi-axiomatization of fine levels

Theorem 1. There is a theory T7 consisting of V,-sentences of the form VT ¢ , ¢
quantifier-free, with the property: if M= (M, e, E,<M M SM _RpM DM pM) s q
transitive L-structure then METT iff M= FE for some a <.

Proof. The abbreviation F(z) for z=I(z, vg= vy, ) expresses that z is a level of the
fine hierarchy. Let 77 consist of (the universal closures of)

1. Transitivity: x€y AyEz A F(z) —x€z

2. Linearity: F(x) AN F(y) —rz€yVar=yVyeEx

3. F(R(x)) N—zE€R(x)

4. R(x)ézNF(z) —x€z

5. Interpretation: F(z) AjEx— (z€I(x, p,§) —zExNp(Y, 2))
6. P(r)ER(x)
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10.

11.

12.

13.

14.

15.

Naming: x=I(R(z), D(z), P(x))

F(x) NF(y) NzeyApex—1(z, p,P)€y

—Fx)V-pex—I(z,p,p)=L1

p<cD(x)—~I(R(z),p,P)=x

P <iexP(x) — -I(R(x), D(x), ) = x , where the lexicographical j<jP(z) can

be expressed purely in terms of <.

u<v < R(u)ER() V (R(u) = R(v) A D(u) <z D(v)) V (R(u) = R(v) A D(u) =

D(v) A P(u)<jexP(v))

Sz, 0, p)#+L—=S(x,p,0)€xNo(S(z, 0, P),D)

Fz)ANpex ANuex A p(u,p)—S(z,

—F(x)V-per—S(z,p,p)=1

@,ﬁ)#J./\S(:E,gp,ﬁ){u
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Constructible hulls and condensation

Definition 2. Z C L* is E-closed if Z is closed with respect to the operations I%,
SE, RE, D¥ and PE. For X C L¥ let FE(X) be the hull of X in LF, i.e., the C -
smallest superset of X which is E-closed.

Theorem 3. Let Z C L* be E-closed. Then there are unique o € Ord, and D C 'V,
and a unique fine isomorphism

O—fgg (Z7 e ) E7 <E Y ‘[E7 SE7 RE7 DE7 PE)

with D C FP

Proof. Let 0: (M, €)=~ (Z, €) be the MOSTOWSKI transitivization. Since V;-theo-
ries transfer downwards, (M, €,...) is a model of 77 and hence of the form F Do O
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Fine ultrapowers

Let Ej: (Ff, c)— (F§,€) with critical point  be an extender on FZ, i.e.,

Vp C FY, p finite: Tr(FE(kUp)) € FF

where Tr(X) is the transitivization of X. Let p C q range over finite subsets of FX.

FE(kUp)

Tap
FF s Tx(FE(kup))
Es|

Es(Te(F5(kUp)))

C F¥(rUq) € Upeupr FrrUp) =72
Tog |

W T(FE(rUq) S dirlim, Te(FE(kUp)) = FE
E;s) sl

Es(opq)

) BT (FE(kU Q) <5 dirlimy, Es(Te(FE(xk Up)))

|
Ult(FE, Ey)
7

7
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Fine ultrapowers

— g FE—Ul(FE, Ey) is Vi-elementary

— if FFis extendable by Ej, i.e., Ult(FF, Es) is wellfounded, then Ult(FZY, E5) =
FE for some E*, o*and g, FX — FE

— WEJQE(;,E*[5+1=EF5
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Fine iterations

. (i) : : : :
A commutative system (Ff(i) ,Tij)i<j< is a fine iteration of FY if
(0
— Flo=FF
(i) (i+1) | : : 3 .
—  Tiit1 ng) —>f§i+1) is a fine ultrapower by some Egz), where 7 < a¥ is max-

imal such that Egi) is an extender on Fﬁi(;); if 70 < ol we say that ]:ﬁi(;) is a
truncation at 1

— if A <6 is a limit ordinal then F ﬁ(;)), (mij)i<j<x is the transitive directed limit
)
of (-7:50 ,Tij)i<j<

—  FLis iterable if such iterations can be freely continued

—  Coiterations: parallel fine iterations to make one iterate an initial segment of
the other
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Soundness of initial segments

Truncations should be sound, i.e.
(i) (i) (i) (i)
Fﬁi) =FF (p(fﬁz’) ) UP(Fﬁi) )

for some canonical projectum p and standard parameter p.

Adding further basic functions to the JF, this can be expressed by a V;-theory. Thus it
is preserved by finestructural ultrapowers: e.g.

- Fl)ne<pla)Aper—I(z,p,p)NEc

R —

- Fla) = Iz, o(x), p(x)) N p(z) ¢
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