A finestructural refinement of the J-hierarchy for extender models

Peter Koepke, University of Bonn

We interpolate successive levels J_{α}^{E} and $J_{\alpha+1}^{E}$ of Jensen's *J*-hierarchy for the extender model L^{E} by an ω -sequence of intermediate levels

$$J_{\alpha}^E = F_{\omega \cdot \alpha}^E \subseteq F_{\omega \cdot \alpha + 1}^E \subseteq F_{\omega \cdot \alpha + 2}^E \subseteq \ldots \subseteq \bigcup_{n < \omega} F_{\omega \cdot \alpha + n}^E = J_{\alpha + 1}^E .$$

Each F_{γ}^{E} is the underlying set of a structure $\mathcal{F}_{\gamma}^{E}=(F_{\gamma}^{E},\in,E,...)$ containing a SKOLEM function and other basic constructible operations. The next level $F_{\gamma+1}^{E}$ consists of all subsets of F_{γ}^{E} which are definable without quantifiers over the structure \mathcal{F}_{γ}^{E} . The fine hierarchy $(\mathcal{F}_{\gamma}^{E})_{\gamma\in\mathrm{Ord}}$ satisfies a strong condensation theorem and other finestructural laws. One can define finestructural extensions (ultrapowers) of \mathcal{F}_{γ}^{E} by extenders in E. If all proper initial segments of \mathcal{F}_{γ}^{E} are finestructurally sound then this inherits to the finestructural extension. Higher core model theory can be based on the new fine structure theory.

ASL Annual Meeting, Irvine, March 28, 2008, 16:00

$\underline{Contents}$

- Extender models
- Jensen's J-hierarchy
- The F-hierarchy
- \forall_1 -axiomatization of F-levels
- Hulls and condensation
- Fine ultrapowers and fine iterations
- Soundness of truncations

Extender models

 $L^E = \bigcup_{\alpha \in \text{Ord}} L^E_{\alpha}$, where E is a sequence $E = (E_{\delta})$ of extenders.

 $E_{\delta} = \emptyset$ or $E_{\delta}: (L_{\gamma}^{E}, \in) \to (L_{\delta}^{E}, \in)$ is an extender, i.e.,

- $E_{\delta} \upharpoonright \kappa = \text{id} \text{ and } E_{\delta}(\kappa) > \kappa \text{ for some critical point } \kappa < \gamma$
- $\quad L^E_{\gamma} = (H_{\leqslant \kappa})^{L^E_{\delta}} \vDash \mathbf{ZFC}^-$
- $E_{\delta}: (L_{\gamma}^{E}, \in) \to (L_{\delta}^{E}, \in)$ is elementary and cofinal
- $(L_{\delta}^{E}, E_{\delta})$ is amenable, i.e., $\forall x \in L_{\delta}^{E} \ x \cap E_{\delta} \in L_{\delta}^{E}$
- **–**

JENSEN-style finestructural analysis

 $L^E = \bigcup_{\alpha \in \text{Ord}} L^E_{\alpha} = \bigcup_{\alpha \in \text{Ord}} J^E_{\alpha}$. Consider E_{δ} being a partial extender, i.e.,

$$- \mathcal{P}(\kappa) \cap J_{\alpha}^{E} \subseteq J_{\gamma}^{E} \text{ and } \mathcal{P}(\kappa) \cap J_{\alpha+1}^{E} \nsubseteq J_{\gamma}^{E}$$

$$- \mathcal{P}(\kappa) \cap \Sigma_n(J_{\alpha}^E) \subseteq J_{\gamma}^E \text{ and } \mathcal{P}(\kappa) \cap \Sigma_{n+1}(J_{\alpha}^E) \nsubseteq J_{\gamma}^E$$

- $\mathcal{P}(\kappa) \cap (J_{\alpha}^{E})^{n,p} \subseteq J_{\gamma}^{E}$ and $\mathcal{P}(\kappa) \cap \Sigma_{1}((J_{\alpha}^{E})^{n,p}) \not\subseteq J_{\gamma}^{E}$, where $(J_{\alpha}^{E})^{n,p} = (J_{\rho}^{E}, \Sigma_{n}\text{-truth predicate,...})$ is an n-th reduct of J_{α}^{E}
- form ultrapower $\pi_{E_{\delta}}: (J_{\alpha}^{E})^{n,p} \to_{\Sigma_{1}} \text{Ult}((J_{\alpha}^{E})^{n,p}, E_{\delta})$
- iterate the ultrapower operation, taking direct limits at limits

JENSEN interpolates $J_{\alpha}^{E} \subseteq J_{\alpha+1}^{E}$ by

$$J_{\alpha}^E = (J_{\alpha}^E)^{0,0} \supseteq (J_{\alpha}^E)^{1,p} \supseteq (J_{\alpha}^E)^{2,p'} \supseteq \dots, J_{\alpha+1}^E$$

A monotone and continuous interpolation

Interpolate $J_{\alpha}^{E} \subseteq J_{\alpha+1}^{E}$ by

$$J_{\alpha}^{E} = \mathcal{F}_{\omega \cdot \alpha}^{E} \subseteq \mathcal{F}_{\omega \cdot \alpha + 1}^{E} \subseteq \mathcal{F}_{\omega \cdot \alpha + 2}^{E} \subseteq \dots \subseteq \bigcup_{n < \omega} \mathcal{F}_{\omega \cdot \alpha + n}^{E} = \mathcal{F}_{\omega \cdot \alpha + \omega}^{E} = J_{\alpha + 1}^{E}.$$

- \mathcal{F}^{E} -hierarchy defined by quantifierfree definability
- \mathcal{F}^{E}_{β} contain Skolem functions for quantifierfree formulas
- quantifierfree definability \leftrightarrow boolean combinations of Σ_1 -definability
- $\quad \mathcal{P}(\kappa) \cap F_{\omega \cdot \alpha + n}^E \subseteq F_{\gamma}^E \text{ and } \mathcal{P}(\kappa) \cap F_{\omega \cdot \alpha + n + 1}^E \nsubseteq F_{\gamma}^E$
- form a fine ultrapower $\pi_{E_{\delta}}: F_{\omega \cdot \alpha + n}^{E} \to \text{Ult}(F_{\omega \cdot \alpha + n}^{E}, E_{\delta}), \dots$

The fine hierarchy

Define $(\mathcal{F}_{\alpha}^{E})_{\alpha \in \text{Ord}}$ recursively

$$\mathcal{F}_{\alpha}^{E} = (F_{\alpha}^{E}, \in, E, <^{E}, I^{E}, S^{E}, R^{E}, D^{E}, P^{E}).$$

-
$$F_0^E = \emptyset$$

- Assume \mathcal{F}_{α}^{E} is defined. For quantifier-free $\varphi(v_0,...,v_{n-1},v_n),\ \vec{p}\in F_{\alpha}^{E}$ define the interpretation

$$I^{E}(F_{\alpha}^{E}, \varphi, \vec{p}) = \{ v_{n} \in F_{\alpha}^{E} | \mathcal{F}_{\alpha}^{E} \vDash \varphi(\vec{p}, v_{n}) \}$$

$$\tag{1}$$

Let

$$F_{\alpha+1}^E = \{ I^E(F_{\alpha}^E, \varphi, \vec{p}) | \varphi(v_0, ..., v_{n-1}, v_n) \text{ q.f., } \vec{p} \in F_{\alpha}^E \}.$$

Define $I^E \upharpoonright F_{\alpha+1}^E$ to extend $I^E \upharpoonright F_{\alpha}^E$ and the assignments made in (1); in all other cases set $I^E(\vec{x}) = \bot$.

The rank function: $R^E \upharpoonright F_{\alpha+1}^E \supseteq R^E \upharpoonright F_{\alpha}^E$, and for $y \in F_{\alpha+1}^E \setminus F_{\alpha}^E$ set

$$R^E(y) = F_\alpha^E$$
.

The definition function: $D^E \upharpoonright F_{\alpha+1}^E \supseteq D^E \upharpoonright F_{\alpha}^E$, and for $y \in F_{\alpha+1}^E \setminus F_{\alpha}^E$, $D^E(y)$ is the $<_{\mathcal{L}}$ -least q.f. φ such that

$$y = I^E(F_\alpha^E, \varphi, \vec{p})$$

for some $\vec{p} \in F_{\alpha}^{E}$;

then let the parameter function $P^E(y)$ be the least such \vec{p} in the lexicographical wellordering induced by $<^E \upharpoonright F_{\alpha}^E$.

The constructible wellowder: $<^E \upharpoonright F_{\alpha+1}^E$ endextends $<^E \upharpoonright F_{\alpha}^E$ and for $y, y' \in F_{\alpha+1}^E \backslash F_{\alpha}^E$

$$y <^E y'$$
 iff $D^E(y) <_{\mathcal{L}} D^E(y')$, or $D^E(y) = D^E(y')$ and $P^E(y)$ is $<^E$ -lexicographically smaller than $P^E(y')$.

The Skolem function: $S^E \upharpoonright F_{\alpha+1}^E \supseteq S^E \upharpoonright F_{\alpha}^E$ and for $\varphi(v_0, ..., v_{n-1}) \in \mathcal{L}_0$ and $\vec{p} \in F_{\alpha}^E$

$$S^{E}(F_{\alpha}^{E},\varphi,\vec{p}\,) = \begin{cases} \text{the } <^{E}\text{-lexicographically minimal } \vec{q} \in F_{\alpha}^{E} \text{ such that } \\ \mathcal{F}_{\alpha}^{E} \vDash \varphi(\vec{p}\,,\vec{q}\,), \text{ if this exists;} \\ \bot, \text{ else.} \end{cases}$$

For all other arguments $\vec{x} \in F_{\alpha+1}^E \setminus F_{\alpha}^E$ set $S^E(\vec{x}) = \bot$.

For limit $\lambda \leq \infty$ take a union of structures

$$\mathcal{F}_{\lambda}^{E} = \bigcup_{\alpha < \lambda} \mathcal{F}_{\alpha}^{E}$$

Hierarchy properties

a)
$$\alpha \leqslant \gamma \rightarrow F_{\alpha}^{E} \subseteq F_{\gamma}^{E}$$

b)
$$\alpha < \gamma \rightarrow F_{\alpha}^{E} \in F_{\gamma}^{E}$$

- c) F_{γ}^{E} is transitive
- d) $F_{\gamma}^{E} \cap \operatorname{Ord} = \gamma$
- e) $\bigcup_{\alpha \in \text{Ord}} F_{\alpha}^{E} = L^{E}$
- f) $F_{\omega \cdot \alpha}^E = J_{\alpha}^E$

\forall_1 -axiomatization of fine levels

Theorem 1. There is a theory $T^{\mathcal{F}}$ consisting of \forall_1 -sentences of the form $\forall \vec{x} \varphi$, φ quantifier-free, with the property: if $\mathcal{M} = (M, \in, E, <^M, I^M, S^M, R^M, D^M, P^M)$ is a transitive \mathcal{L} -structure then $\mathcal{M} \models T^{\mathcal{F}}$ iff $\mathcal{M} = \mathcal{F}_{\alpha}^E$ for some $\alpha \leq \infty$.

Proof. The abbreviation F(z) for $z = I(z, v_0 = v_0, \emptyset)$ expresses that z is a level of the fine hierarchy. Let $T^{\mathcal{F}}$ consist of (the universal closures of)

- 1. Transitivity: $x \in y \land y \in z \land F(z) \rightarrow x \in z$
- 2. Linearity: $F(x) \land F(y) \rightarrow x \in y \lor x = y \lor y \in x$
- 3. $F(R(x)) \wedge \neg x \in R(x)$
- 4. $R(x) \dot{\in} z \wedge F(z) \rightarrow x \dot{\in} z$
- 5. Interpretation: $F(x) \land \vec{y} \in x \rightarrow (z \in I(x, \varphi, \vec{y}) \leftrightarrow z \in x \land \varphi(\vec{y}, z))$
- 6. $P(x) \dot{\in} R(x)$

- 7. Naming: x = I(R(x), D(x), P(x))
- 8. $F(x) \land F(y) \land x \in y \land \vec{p} \in x \rightarrow I(x, \varphi, \vec{p}) \in y$
- 9. $\neg F(x) \lor \neg \vec{p} \in x \to I(x, \varphi, \vec{p}) = \bot$
- 10. $\varphi <_{\mathcal{L}} D(x) \rightarrow \neg I(R(x), \varphi, \vec{p}) = x$
- 11. $\vec{p} \dot{<}_{\text{lex}} P(x) \rightarrow \neg I(R(x), D(x), \vec{p}) = x$, where the lexicographical $\vec{p} \dot{<}_{\text{lex}} P(x)$ can be expressed purely in terms of $\dot{<}$.
- 12. $u \dot{<} v \leftrightarrow R(u) \dot{\in} R(v) \lor (R(u) = R(v) \land D(u) <_{\mathcal{L}} D(v)) \lor (R(u) = R(v) \land D(u) = D(v) \land P(u) \dot{<}_{\text{lex}} P(v))$
- 13. $S(x, \varphi, \vec{p}) \neq \bot \rightarrow S(x, \varphi, \vec{p}) \dot{\in} x \land \varphi(S(x, \varphi, \vec{p}), \vec{p})$
- 14. $F(x) \land \vec{p} \in x \land u \in x \land \varphi(u, \vec{p}) \rightarrow S(x, \varphi, \vec{p}) \neq \bot \land S(x, \varphi, \vec{p}) \leq u$
- 15. $\neg F(x) \lor \neg \vec{p} \in x \to S(x, \varphi, \vec{p}) = \bot$

Constructible hulls and condensation

Definition 2. $Z \subseteq L^E$ is E-closed if Z is closed with respect to the operations I^E , S^E , R^E , D^E and P^E . For $X \subseteq L^E$ let $\mathcal{F}^E(X)$ be the hull of X in L^E , i.e., the \subseteq -smallest superset of X which is E-closed.

Theorem 3. Let $Z \subseteq L^E$ be E-closed. Then there are unique $\alpha \in \operatorname{Ord}$, and $D \subseteq V$, and a unique fine isomorphism

$$\sigma: \mathcal{F}_{\alpha}^D \cong (Z, \in, E, <^E, I^E, S^E, R^E, D^E, P^E)$$

with $D \subseteq F_{\alpha}^{D}$.

Proof. Let $\sigma: (M, \in) \cong (Z, \in)$ be the Mostowski transitivization. Since \forall_1 -theories transfer downwards, $(M, \in, ...)$ is a model of $T^{\mathcal{F}}$ and hence of the form \mathcal{F}^D_{α} . \square

Fine ultrapowers

Let $E_{\delta}: (F_{\gamma}^{E}, \in) \to (F_{\delta}^{E}, \in)$ with critical point κ be an extender on \mathcal{F}_{α}^{E} , i.e.,

$$\forall p \subseteq F_{\alpha}^{E}, p \text{ finite: } \operatorname{Tr}(\mathcal{F}^{E}(\kappa \cup p)) \in F_{\gamma}^{E}$$

where Tr(X) is the transitivization of X. Let $p \subseteq q$ range over finite subsets of F_{α}^{E} .

$$\mathcal{F}^{E}(\kappa \cup p) \subseteq \mathcal{F}^{E}(\kappa \cup q) \subseteq \bigcup_{\substack{p \subseteq_{\text{fin}} F_{\alpha}^{E} \\ \rho \subseteq$$

Fine ultrapowers

- $\pi_{E_{\delta}}: \mathcal{F}_{\alpha}^{E} \to \text{Ult}(\mathcal{F}_{\alpha}^{E}, E_{\delta}) \text{ is } \forall_{1}\text{-elementary}$
- if \mathcal{F}_{α}^{E} is extendable by E_{δ} , i.e., $\text{Ult}(\mathcal{F}_{\alpha}^{E}, E_{\delta})$ is wellfounded, then $\text{Ult}(\mathcal{F}_{\alpha}^{E}, E_{\delta}) = \mathcal{F}_{\alpha^{*}}^{E^{*}}$ for some E^{*} , α^{*} and $\pi_{E_{\delta}}$: $\mathcal{F}_{\alpha}^{E} \to \mathcal{F}_{\alpha^{*}}^{E^{*}}$
- $\quad \pi_{E_{\delta}} \supseteq E_{\delta} \,, \, E^* \upharpoonright \delta + 1 = E \upharpoonright \delta$

Fine iterations

A commutative system $(\mathcal{F}_{\alpha^{(i)}}^{E^{(i)}}, \pi_{ij})_{i \leqslant j < \theta}$ is a fine iteration of \mathcal{F}_{α}^{E} if

- $-\mathcal{F}_{lpha^{(0)}}^{E^{(0)}}\!=\!\mathcal{F}_{lpha}^{E}$
- $\quad \pi_{i,i+1}: \mathcal{F}_{\tau^{(i)}}^{E^{(i)}} \to \mathcal{F}_{\alpha^{(i+1)}}^{E^{(i+1)}} \text{ is a fine ultrapower by some } E_{\delta}^{(i)}, \text{ where } \tau^{(i)} \leqslant \alpha^{(i)} \text{ is maximal such that } E_{\delta}^{(i)} \text{ is an extender on } \mathcal{F}_{\tau^{(i)}}^{E^{(i)}}; \text{ if } \tau^{(i)} < \alpha^{(i)} \text{ we say that } \mathcal{F}_{\tau^{(i)}}^{E^{(i)}} \text{ is a } truncation \text{ at } i$
- if $\lambda < \theta$ is a limit ordinal then $\mathcal{F}_{\alpha^{(\lambda)}}^{E^{(\lambda)}}$, $(\pi_{ij})_{i \leqslant j < \lambda}$ is the transitive directed limit of $(\mathcal{F}_{\alpha^{(i)}}^{E^{(i)}}, \pi_{ij})_{i \leqslant j < \lambda}$
- \mathcal{F}_{α}^{E} is *iterable* if such iterations can be freely continued
- Coiterations: parallel fine iterations to make one iterate an initial segment of the other

Soundness of initial segments

Truncations should be *sound*, i.e.

$$\mathcal{F}_{\tau^{(i)}}^{E^{(i)}} \!=\! \mathcal{F}^{E^{(i)}}(\rho(\mathcal{F}_{\tau^{(i)}}^{E^{(i)}}) \cup p(\mathcal{F}_{\tau^{(i)}}^{E^{(i)}}))$$

for some canonical projectum ρ and standard parameter p.

Adding further basic functions to the \mathcal{F} , this can be expressed by a \forall_1 -theory. Thus it is preserved by finestructural ultrapowers: e.g.

- $\quad F(x) \land \xi < \rho(x) \land \vec{p} \in x \,{\to}\, I(x,\varphi,\vec{p}) \cap \xi \in x$
- $\quad F(x) \mathop{\rightarrow} I(x, \varphi(x), \overrightarrow{p(x)}) \cap \rho(x) \not\in x$
- **–**