
 

 
A Problem in Cartography
Author(s): John Milnor
Source: The American Mathematical Monthly, Vol. 76, No. 10 (Dec., 1969), pp. 1101-1112
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2317182
Accessed: 13-02-2018 10:34 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and
extend access to The American Mathematical Monthly

This content downloaded from 129.13.187.252 on Tue, 13 Feb 2018 10:34:19 UTC
All use subject to http://about.jstor.org/terms



 A PROBLEM IN CARTOGRAPHY

 JOHN MILNOR, Massachusetts Institute of Technology

 1. Introduction. The central problem of mathematical cartography is the

 problem of representing a portion of the curved surface of the earth on a flat
 piece of paper without introducing any more distortion than is absolutely
 necessary. This note will propose a quantitative definition for the term "distor-

 tion," and then study the mathematical problem of choosing a method of map-
 ping which minimizes distortion.

 To simplify the problem we first replace the rather irregular surface of the

 earth by a perfect sphere.

 DEFINITIONS. Let S be the sphere of radius r consisting of all points x in the

 3-dimensional euclidean space with distance r from the origin, and let U be any
 nondegenerate subset of S. (By "nondegenerate" we mean that U must contain
 at least two distinct points.)

 A map projection f on the domain U will mean a function which assigns to each
 point x of U some point f(x) of the euclidean plane E.

 Let ds(x, y) denote the geodesic distance between two points x and y of the
 sphere S. By definition, this is equal to the length of the shorter great circle arc
 joining x to y. The euclidean distance between two points a and b of the plane
 E will be denoted analogously by dE(a, b).

 The scale of a map projection f with respect to a pair of distinct points x and y
 in the domain U is defined to be the ratio

 dE(f(x), f(y))/ds(x, y).

 Ideally we would like this scale to be the same for all pairs of points x and y
 in U, but this is not usually possible. So we must introduce the minimum scale

 0.1, defined to be the infimum of the ratio dE(f(x), f(y))/ds(x, y) as x and y vary
 over all pairs of distinct points in U, and the maximum scale 2, defined to be the

 supremum of the ratio dE(f(x), f(y))/ds(x, y). In other words o, and o.2 are the
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 1102 A PROBLEM IN CARTOGRAPHY [December

 "best" possible constants such that the inequality

 aids(x, y) <! dE(f(x), f(y)) :! 0a2ds(x, y)

 holds for all points x and y in U.

 To measure the extent to which scale fails to be constant we propose the

 following:

 DEFINITION. The distortion of the map projectionf is the natural logarithm

 5 = 1og(02/0l)

 of the ratio of maximum scale to minimum scale.

 Thus 0 <8 < oo, where 6 is finite if and only if both al and 02 are positive and
 finite numbers. If 6 is finite, notice that the functionf is continuous and one-to-
 one.

 We would like to find a map projection f with no distortion at all (a=0).
 Since this is not possible except in a few special and uninteresting cases (e.g., the
 case of a domain U consisting of only three points), the best we can actually do
 is to try to find a map projection for which 6 is as small as possible.

 DEFINITION. A minimum distortion map projection fo on U will mean a map
 projection whose distortion So is less than or equal to the distortion of every other
 map projection on U.

 PRELIMINARY THEOREM. For every nondegenerate set of points U on the sphere
 there exists a minimum distortion map projectionfo with domain U.

 The proof of this theorem, which is quite elementary, will be deferred until
 Appendix A.

 Unfortunately the proof will fail to suggest answers to a number of relevant
 questions: Is this minimum distortion map fo unique in some sense? Is fo
 differentiable (assuming that U is a nice enough set so that differentiability
 makes sense)? How can one actually construct fo, or even a reasonable approxi-
 mation to fo? How can one estimate the minimum possible distortion So associ-
 ated with a given set U?

 This note will succeed in answering these questions only in one very special
 case, namely, the case of the region bounded by a circle on S.

 Given a fixed point xo of S, let Da denote the closed disk of geodesic radius
 ra, consisting of all points x in S for which ds(x, xo) <ra. Here a can be any
 number in the interval 0 <a <7r.

 MAIN THEOREM. There is one and, up to similarity transformations of the
 plane, only one minimum distortion map projection fo on the domain Da. This map
 projection is infinitely differentiable, and has distortion 5o equal to log(a/sin a).

 This minimum distortion projection fo, known to cartographers as the "az-
 imuthal equidistant projection," can be characterized by the fact that it pre-
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 19691 A PROBLEM IN CAkTOGRAPHY 1103

 serves both distances and directions from the central point xo. The explicit
 formula 6S = log(a/sin a) shows that the distortion So is small for small values of
 a, being asymptotically equal to

 a2/6 2 area Da/area S

 as a-->0. However So tends to infinity as a-or.
 This theorem will be proved in Section 2. The problem of estimating the So

 associated with a more general domain U is discussed in Section 3. There are
 two appendices, one proving that minimum distortion map projections exist, and
 a second discussing a corresponding problem for conformal map projections,
 following Chebyshef.

 2. The azimuthal equidistant projection. Again let Da denote a spherical
 disk of geodesic radius ra centered at xo.

 LEMMA 1. The distortion 6 for any map projection f with domain Da satisfies
 6 > log (a/sin a).

 Proof. We may assume that f has finite distortion. Hence the "Lipschitz
 inequality"

 (1) dg(f(x), f(y)) <0a2ds(x, y)

 is satisfied, where 02 is a finite constant, and it follows that f is continuous.
 Furthermoref is one-to-one.

 Let Ca denote the boundary of the disk Da. Clearly the image f(Ca) is a
 simple closed curve in the plane. We shall first prove:

 ASSERTION A. Every half-line emanating from the point f(xo) in the plane
 must intersect the simple closed curvef(Ca) at least once.

 Proof. The Jordan Curve Theorem asserts that the simple closed curve
 f(C,g) cuts the plane into two components

 E - f(Ca) = El U E2,

 one of these components, say E1, being bounded, and the second unbounded.
 But the bounded component E1 is just the image, under the continuous one-to-
 one function f, of the interior of the disk Da. This is proved, for example, in
 Newman [10, Theorem 12.2, p. 121 ]. In particular it follows that the pointf(xo)
 must belong to the bounded component E1. Hence every half-line emanating
 from xo must cross f(Ca), since otherwise it would lie completely within the
 bounded set E1 which is impossible. This proves Assertion A.

 Since the curve Ca on S has finite length 27rr sin a, it follows easily from the
 Lipschitz inequality (1) thatf(Ca) also has finite length L, where

 (2) L < 27ru2r sin a.
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 1104 A PROBLEM IN CARTOGRAPHY [December

 (The length of a not necessarily smooth curve is defined for example in [6, p. 36].)
 Now let us make use of the inequality

 (3) dEs(f(X), f(y)) _> aids(x, y) .

 Since every point of Ca has geodesic distance exactly ra from xo it follows that
 every point of f(Ca) has euclidean distance >?ora from f(xo).

 Thus f(Ca) is a simple closed curve of finite length L which lies outside an
 open disk D* of radius o1ra in the plane, and cuts every half-line through the
 center of this disk.

 ASSERTION B. This implies that L _ 2i7ro1ra, where equality holds if and only if
 f(Ca) is precisely equal to the boundary of D*.

 Proof. Cut f(Ca) by a straight line through the center of D* and choose
 intersection points, say a and b, which lie on opposite sides of D*. Let A be
 either one of the two arcs of f(Ca) from a to b. Introducing polar coordinates p
 and 6 about the center of D*, first assume that the arc A can be described, in
 terms of a parameter t, by piecewise smooth functions

 p = p(t), 0 = 0(t).

 Then

 length A (p2 + p2o2)1/2dt > f p16 ddt

 where the dot denotes differentiation. Since

 p _ alroa and f 1 ddt fdt >7r,

 this proves that length A ?irlora, and therefore L ? 2iz-o1ra, as required.
 If A is not piecewise smooth, then an extra step is needed. For each e> 0

 it is possible to approximate A by a polygonal path AE' from a to b which lies
 outside the disk of radius o1ra -e and satisfies

 length A _ length A' > xr(alra -).

 Letting e- O, we obtain length A >?io-ora, as before.
 Now suppose that the length of A is precisely equal to iro1ra. Then any

 portion of A which has distance greater than olra from the center of D * must be
 a straight line segment. Otherwise, replacing some small portion of A by a
 straight line segment we could decrease its length, which is impossible.

 Any maximal line segment Ao which forms a part of A must lead from one
 of the end points a or b of A to a point of the circle bounding D*. The only other
 possibility would be that both end points of Ao lie on the circle, which is im-
 possible. Thus A consists of a line segment (possibly degenerate) from a to the
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 circle, followed by a circle arc, followed by a line segment to b. Elementary
 geometry now shows that the minimal length 7ro1ra is achieved only if A is the
 semicircle. Hence L can equal 2ii-oara only iff(C,) is the full circle. This completes
 the proof of Assertion B.

 Combining Assertion B with the inequality (2) we obtain

 27raora < 2rXC2r sin a

 or

 a/sin a _ U2/al

 and hence log (a/sin a) <?, which completes the proof of Lemma 1.

 LEMMA 2. If the distortion of f is precisely equal to log (a/sin ca), then f is an
 azimuthal equidistant projection.

 By definition this means that f carries each great circle passing through xo
 into a straight line in the plane, the angle between two great circles being equal
 to the angle between the corresponding straight lines, and thatf carries each circle
 C centered at xo to a circle f (C) centered at f(xo), the radius of f(C) being pro-
 portional to the geodesic radius of C.

 To differential geometers, this means that f is the inverse of the so called
 exponential map. It follows that f is infinitely differentiable, even at xo. See
 for example [9, p. 147 ].

 Proof of Lemma 2. If 8= log(a/sin a), then according to Assertion B the
 imagef(Ca) must be precisely equal to the circle of radius

 Ulra = C2r sin a

 centered at f(xo). Hence the image f(Da) must be precisely the closed disk
 bounded by this circle. (Compare the proof of Assertion A.)

 Now consider an arbitrary point x of Da. Construct a great circle segment
 from xo through x to a point x on the boundary Ca of Da. If c denotes the geodesic
 distance ds (xo, x), note that x has geodesic distance precisely ra - c from x, and
 geodesic distance strictly greater than rao-c from every other point of Ca.
 Hence, using inequality (3), the imagef(x) must

 (a) have distance at least o1c fromf(xo),
 (b) have distance at least o-(ra - c) from f(x), and
 (c) have distance greater than o1(roa-c) from every other point off(Ca).
 Clearly there is one and only one point in the disk f(Da) which satisfies these

 three conditions: namely, the point which lies at distance o1c along the line seg-
 ment fromf(xo) tof(x). Thus the map projectionf on Da is completely determined
 by what is does to boundary points of Da.

 To complete the proof of Lemma 2 we need only verify that f carries the
 circle Ca to the circle f(Ca) by a similarity transformation which multiplies all
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 1106 A PROBLEM IN CARTOGRAPHY [December

 lengths by the constant factor 02. Suppose that we cut Ca into two arcs A and
 A', so that

 length A + length A' = length Ca = 27rr sin a.

 The Lipschitz inequality (1) implies that

 (4) length f(A) < o2 length A, lengthf(A') : 02 length A'.

 But

 length f(A) + length f(A') = length f(C,)

 is precisely equal to 02 times the length 27rr sin a of C,. So both of the inequalities
 (4) must actually be equalities. This proves Lemma 2.

 Now we must prove the converse.

 LEMMA 3. The azimuthal equidistant projection on the disk Da has distortion a

 precisely equal to log (a/sin a!).

 Proof. Centering Da at the north pole, we will use the longitude 0?<0 27r

 and the colatitude 0 <y <a as coordinates. Suppose thatf maps the point with
 colatitude y and longitude 0 to the point with cartesian coordinates (ry cos 0,
 ry sin 0) in the plane. The length of any smooth curve 7=7(t), 0=0(t) in Da is
 given by the integral

 L = rf (_y2 + 02 sin2 'y)112dt,

 and the length of the corresponding curve in f(D,) is

 L' = rf (12 + 62y2)1"2dt.

 But, since /sin y is a monotone increasing function of y, we have

 sin y < y < (a/sin a) sin -y,

 from which it follows easily that

 (5) L < L' < (a/sin a)L.

 Starting from this inequality (5) we will prove that

 ds(x, y) _< dE(f(X), f(y)) _< (ca/sin at)ds(x, y)

 for every x and y in Da. Clearly this will imply that 8 <logQ(x/sin a) and
 hence, by Lemma 1, that a = log(a/sin at).

 Proof that ds(x, y) dE(f(X), f(y)). Join f(x) to f(y) within the convex set
 f(Do) by a line segment of length L' precisely equal to dE(f(x), f(y)). The cor-
 responding curve in Da will have length L> ds(x, y). Since L <L', we obtain
 ds(x, y) ds (f(x), f(y)), as required.
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 Proof that dB(f(x), f(y)) ? (a/sin a)ds(x, y). First suppose that a ?<r/2, so
 that the disk Daf is "geodesically convex." Then the proof is quite analogous.
 Join x to y, within Da, by a great circle segment A of length L =ds(x, y). Then
 f(A) has length L' 2dB(f(x), f(y)), so the inequality L' < (a/sin a)L implies that
 dE(f(x),f(y)) _ (a/sin a)ds(x, y), as required.

 If a>wr/2, so that the disk Daf is not geodesically convex, then a more com-
 plicated argument is necessary. Suppose that the shortest great circle arc from
 x to y does not lie completely within Da, but rather crosses out of Da, at a
 boundary point x, and then crosses back in at another boundary point y. We shall
 show that

 (6) dB(f(x), f(x)) < (a/sin a)ds(x, x),

 (7) dB(f(x), f(y)) < (a/sin a)ds(x, y),

 (8) dB(f(y), f(y)) < (a/sin a)ds(y, y).

 Adding these three inequalities, we shall clearly obtain the required inequality.
 But (6) and (8) can be proved by the argument above. To prove (7) we

 introduce an auxiliary azimuthal equidistant projection g whose domain is the
 complementary disk D.'-, centered at the south pole. Since 7r-a <7r/2 we have

 dE(g(.t), g(y)) < ((r - a)/sin(r - a))ds(x, y).

 Multiplying this by a/(r-a) we obtain the required inequality (7). This
 completes the proof of Lemma 3.

 Clearly Lemmas 1, 2, and 3 imply the "Main Theorem" of Section 1.

 3. Discussion. How can one estimate the minimum possible distortion 6o for
 map projections on a given set U? Here is a crude estimate. Define the angular
 width w of a set U as follows. Choose a smallest possible "lune" (figure bounded
 by two great semicircles) containing U, and let w be the angle at the vertex of
 this lune.

 ASSERTION. Any set with angular width w <r possesses a map projection with
 distortion 5 <log sec(w/2).

 This is proved by rotating so that the lune is centered on the equator, and
 then using the latitude and longitude of x as the cartesian coordinates of f(x).
 The computations are similar to those in the proof of Lemma 3.

 It is conjectured that this estimate gives the right order of magnitude in the
 case of a small geodesically convex region, in the sense that 5o is greater than say
 one sixth of log sec(w/2). But log sec(w/2) is not a really good estimate for 6o,
 except perhaps in the case of a long narrow region.

 It would be more interesting to find a relation between 6o and area.

 PROBLEM. Among all geodesically convex regions of given area, does the disk
 D. require the largest distortion?
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 1108 A PROBLEM IN CARTOGRAPHY [December

 In other words, if area(U) =area(Da) does it follow that U has a map pro-
 jection with distortion 6?<log(oa/sin ca)? If true this would imply the existence
 of map projection with smaller distortion than any which are actually known
 for many regions on the sphere. A test case which would be particularly interest-
 ing would be that of a small "rectangular" region on the sphere.

 Slightly cruder is the following possible estimate.

 PROBLEM. Does every geodesically convex region U possess a map projection
 with distortion less than the normalized area,

 8 < area U/area S?

 As an example, for the continental United States with about 1.5 percent of
 the earth's area, does there exist a map projection with scale errors of no more
 than 1.5 percent (or perhaps 1.5 +E to allow for the lack of geodesic convexity)?
 All standard map projections for the continental United States seem to have
 scale errors of at least 2.2 percent.

 Appendix A. Minimum distortion projections always exist. We shall first
 prove the following. Let U be a subset of the sphere S and let U denote the
 topological closure of U.

 LEMMA 4. Any map projection f on U with distortion 8 < oo extends uniquely to
 a map projection 7 on U having the same distortion 8.

 Proof. The inequalities

 -ids(x, y) < dE(f(x), f(y)) < 02ds(x, y)

 show thatf is uniformly continuous, and hence extends uniquely to a continuous
 function 7 on U. (See [3, p. 55].) Clearly 7 will also satisfy these inequalities.

 Now, given some fixed set U, consider all possible map projections f with
 domain U, and let 8o denote the infimum of the corresponding distortions b(f).
 We must construct a map projection fo whose distortion is precisely equal to
 So. We may assume that 8o < oo, since otherwise there is nothing to prove.

 REMARK. Note that there exists a map projection with finite distortion on

 U if and only if the closure U is not the entire sphere. For if U is not everywhere
 dense on S then U is contained in some disk DT-e and hence possesses a map
 projection with distortion 8?< log((7r -e)/sin(7r -e)) < oo. But if U = S then a
 map projection with finite distortion on U would extend to a map projection with
 finite distortion on S, which is impossible since SD Da for all a, or since S is not
 homeomorphic to any subset of E. (See for example [10, p. 122 ].)

 Choose a sequence of map projections {fi, f2, f3, ** } on U so that the cor-
 responding sequence {81, 82, 83, * * } of distortions tends to the limit So. We
 may assume that each fi has been chosen so as to have maximum scale equal to
 1, and so that the imagefi(U) contains the origin.
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 1969] A PROBLEM IN CARTOGRAPHY 1109

 Choose a countable dense subset

 U' = {XI, X2, X3, ...

 of U. Since the points fi(xi), f2(xi), * * * all have distance <?rr from the origin,
 we can choose a convergent subsequence. That is there exists an infinite set I
 of positive integers so that the sequence of pointsfi(xi), where i tends to infinity
 through the set I,, converges to some limit a, in E. Similarly we can find an
 infinite set I2CI, so that the limit

 lim{fi(x2) j i ,00 i (E 12

 exists. Call this limit a2. Continuing inductively we can define a function f from

 U' to the plane byf(xj)=aj=lim{fi(xj)Ji- >oo, i(EIj}. Since the inequalities

 e-6ids (x, y) <_ dg (fi (x), fi (y)) -< ds (x, y)

 hold for all i, it follows, taking the limit as i tends to infinity through an ap-
 propriate Is, that

 e-lods(x, y) < ds(f(x), f(y)) < ds(x, y)

 for all x and y in U'. Thusf is a map projection on U' with distortion 80.
 Now applying Lemma 4 we obtain the required map projection on U with

 distortion 6o.

 Appendix B. Conformal map projections. Recall that a map projection f,
 defined on an open set U, is called conformal (cartographers prefer the term
 "orthomorphic") if it is differentiable and preserves angles. (That is, f transforms
 any pair of curves in U, whose tangent vectors at a point of intersection span the
 angle a into a pair of curves in E, whose tangent vectors at the corresponding
 intersection point span the same angle a.)

 It follows thatf has a well defined infinitesimal-scale a(x) at each point x of

 U. By definition a(x) is the limit of the ratio dR(f(x)J,f(y))/ds(x, y) as y tends to
 the limit x. (Compare [1, p. 74 ].)

 We shall make use of the Laplace-Beltrami operator A, a second order partial
 differential operator which assigns to each twice differentiable real valued func-
 tion g on a Riemannian manifold a new real valued function Ag. In euclidean
 space this is the familiar Laplace operator. We shall use A only on the sphere S
 of radius r. Using latitude X and longitude 0 as coordinates, the operator A on
 the sphere takes the form

 r2Ag = gx,x - g tan X + geo sec2 X.

 (Compare [14, p. 160]. The subscripts denote partial derivatives.)
 Suppose now that U is a simply connected open subset of the sphere S.

 LEMMA 5. The infinitesimal-scale function a(x) associated with a conformal
 map projection f on U determines f up to an (orientation preserving or reversing)
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 1110 A PROBLEM IN CARTOGRAPHY [December

 rigid motion of the plane. A given positive real valued function o on U is the infini-
 tesimal-scale function associated with some conformal f if and only if of is twice
 differentiable and satisfies the differential equation r2A log o- = 1.

 As an example, the function o(x) =sec(latitude x) provides a solution to this
 equation r2A log o- = 1, except at the north and south poles. The corresponding
 f turns out to be the familiar Mercator projection.

 (Note that our differential equation cannot have any solution which is
 defined and smooth throughout the entire sphere, since the condition A log of > 0
 implies easily that o. cannot have any local maximum.)

 Proof of Lemma 5. More generally, consider a smooth surface M provided
 with a Riemannian metric, expressed in terms of local coordinates u and v as
 ds2=Edu2+2Fdudv+Gdv2. Let A denote the associated Laplace-Beltrami
 operator, and let K denote the Gaussian curvature of M. Consider a second
 Riemannian metric of the form a.2ds2 on M, where o- is a positive twice differen-
 tiable function. Computation (using for example [14, pp. 113, 160]) shows that
 the Gaussian curvature K' associated with this new Riemannian metric is given
 by the formula K' = (K -A log a.)/a.2.

 If o- is the infinitesimal-scale function associated with a conformal mapping
 f from M to M', then clearly K'(x) is just the Gaussian curvature of M' atf(x).
 Thus if M' is the euclidean plane, with K'- 0, we see that the differential
 equation

 A log =K

 must be satisfied. In particular, taking M to be the open subset U of S, with
 K=- 1/r2, we obtain the required equation

 r2A log o- = 1.

 Conversely, given any solution o. to the differential equation A log o = K, the
 Riemannian metric a.2ds2 has curvature K' identically zero. Hence any suffi-
 ciently small connected open subset of M, with the metric a2ds2, can be mapped
 isometrically onto an open subset of the plane ([14, p. 145]). This isometry is
 unique up to rigid motions of the plane, since any isometry c from one connected
 open subset of the plane to another extends to an isometry of the entire plane.
 (Assuming that 4 preserves orientation, we can think of 4 as a complex analytic
 function [1, p. 74] with j d?/dz| _1. Hence dq/dz is constant and +)(z)= cz+c'
 with |c|=1.)

 Now if M is simply connected then a monodromy argument shows that these
 local isometries can be chosen so as to fit together to yield a smooth mapping f
 from all of M to E.

 (Compare [8, p. 1297]. The "Monodromy Theorem" says that if we are given
 connected open sets Ua covering a simply connected manifold M, and for each
 Ua a collection Fa of functions from U, to Y satisfying the following condition,
 then there exists a function from M to Y whose restriction to each U,, belongs
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 1969] A PROBLEM IN CARTOGRAPHY 1111

 to F.. The condition is that for each fa in F. and each x in UTI Up there should
 exist one and only onefp in F, which coincides withfa throughout some neighbor-
 hood of x. Compare [1, p. 285], [12, p. 67].)

 In the large, this mappingf from M to E may not be one-to-one, but locally
 it carries M, with the metric o2ds2, isometrically to E. Hence it carries M with
 the original metric ds2 conformally to E, the infinitesimal-scale function of f
 being precisely equal to o. This completes the proof of Lemma 5.

 Chebyshef [2] studied conformal map projections, using the ratio sup o(x)/
 inf o(x) of maximum infinitesimal-scale to minimum infinitesimal-scale as a
 measure of distortion.

 REMARK. If the domain U is geodesically convex, note that the maximum
 infinitesimal-scale sup o(x) is equal to the maximum scale 02 of Section 1. (Com-
 pare the proof of Lemma 3.) Similarly, if f is one-to-one and f(U) is convex,
 then inf o(x) =cr1.

 CHEBYSHEF THEOREM. If U is a simply connected region bounded by a twice

 differentiable curve, then there exists one and, up to a similarity transformation oJ
 E, only one conformal map projection which minimizes this ratio sup o/inf o.
 This "best possible" conformal map projection is characterized by the property that
 its infinitesimal-scale function o(x) is constant along the boundary of U.

 This result has been available for more than a hundred years, but to my
 knowledge it has never been used by actual map makers.

 Proof. Setting g(x) =log o(x), first note that the differential equation r2Ag= 1
 has a unique solution satisfying the boundary condition g(x) = 0 for xEbd(U).
 See for example [5, p. 288 1. If h is any other function which is twice differentiable
 and satisfies the equation r2Ah= 1 throughout the interior of U, then we shall
 show that

 (9) sup h-inf h > sup g-inf g,

 where equality holds if and only if

 h = g + constant.

 (Note that sup g - inf g is just the logarithm of the ratio sup a/inf a which we want
 to minimize.) Clearly this will complete the proof.

 Since Ag>O, an easy argument shows that the function g cannot attain its
 maximum at any interior point of U. Since g must achieve a maximum at some
 point of the compact set U, it follows that the maximum must be attained on
 bd(U). Thus sup g(x) = 0.

 The difference h -g satisfies the homogeneous equation A(h -g) = 0, and so
 cannot achieve its maximum at an interior point of U unless h-g= constant.
 (See [5, p. 232].) Hence any sequence of points xi, x2, * * * for which

 lim (h(x) -g(xi)) = sup(h - g)
 t-00
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 must be a sequence tending to the boundary of U, unless h - g = constant.
 Setting c = sup h (we may assume that c is finite since otherwise (9) would

 trivially be satisfied), we have

 g(x;) O, h(xi) < C,

 hence

 sup(h - g) = lim(h(x,) - g(xi)) < c,

 or in other words

 h(x) < g(x) + c

 for all x. Therefore inf h < inf g+c, which proves (9).
 If equality holds, then at the interior point xo of U where g achieves its

 minimum we have

 h(xo) = g(xo) + c.

 Thus h - g achieves its maximum c at an interior point, and hence is constant.
 This completes the proof.

 REMARK. The "best possible" conformal map projection f, although locally
 well behaved, may not be one-to-one in the large. However, if U is geodesically
 convex, then it can be shown thatf is one-to-one and thatf(U) is also convex.
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