
In the following an empty intersection of subsets of X will be X.

Problem 1 (6 points). For a topological space X, show the equivalence

of the following conditions:

• We have X 6= ∅, and if U and V are non-empty open subsets

of X, then U ∩ V 6= ∅.
• If n ∈ N and (Ui)

n

i=1
are non-empty open subsets of X then⋂

n

i=1
Ui 6= ∅.

• If n ∈ N and (Ai)
n

i=1
are proper closed subsets of X then

⋃
n

i=1
Ai 6=

X.

• We have X 6= ∅ and every open subset of X is connected.

• We have X 6= ∅ and every non-empty open subset of X is dense

in X.

Definition 1. A topological space is called irreducible if it satisfies

these equivalent conditions. A subset of a topological space will be

called irreducible if it becomes irreducible when equipped with the in-

duced topology.

Problem 2 (1 point). Let X be a topological space, x ∈ X and {x}

the closure of X. Show that {x} is an irreducible subset of X.

Definition 2. We call x a generic point of the irreducible closed subset

Z ⊆ X if Z = {x}.

The following separation axioms will be important in what follows:

T0: If x 6= y are points of X, then there exists a subset M ⊆ X

which is open or closed and such that x ∈ M and y 6∈ M .
T1: If x 6= y are points of X, then there exists an open subset

U ⊆ X such that x ∈ U and y 6∈ U .
T2: If x 6= y are points ofX, then there exist disjoint open subsets

U and V such that x ∈ U , y ∈ V . This is the Hausdorff axiom.
T3: X is T0, and if x ∈ X and A ⊆ X is a closed subset of X

not containing x, then there are disjoint open subsets U and V

such that x ∈ U and A ⊆ V .
T4: X is T1, and if A and B are disjoint closed subsets of X then

there are disjoint open subsets U and V of X such that A ⊆ U

and B ⊆ V .

It is rather easy to see that each of these axioms implies the earlier ones.
Some of these axioms have obvious equivalent versions. For instance,
T1 is equivalent to every point being closed and T2 to the diagonal
being a closed subset of X ×X.

Problem 3 (1 point). Show that X is T0 if and only if every irreducible

subset has at most one generic point.
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Definition 3. We call X sober if it is T0 and every irreducible closed

subset has a generic point.

Problem 4 (3 points). Show that every finite T0-space is sober.

Recall that a set F of subsets of a set X is called a filter if the
following conditions hold:

• X ∈ F and ∅ 6∈ F.
• If M ∈ F and M ⊆ N ⊆ X then N ∈ F.
• If M,N ∈ F then M ∩N ∈ F.

A ultrafilter is a ⊆-maximal element of the set of filters or, equivalently,
a filter such that for every M ⊆ X one of M or X \M belongs to F.
By Zorn’s lemme every filter is contained in some ultrafilter.
If X is also equipped with a topology then we say that x ∈ X is

a point of condensation of F if every neighbourhood of x has a non-
empty intersection with every element of F and a limit of F if every
neighbourhood of x belongs to F. Obviously every limit is a point of
condensation and the opposite implication holds for ultrafilters but not
for general filters.

Definition 4. A topological space X is called quasi-compact it the

following equivalent conditions hold:

• Every open covering has a finite subcovering.

• If (Ai)i∈I is a family of closed subsets and
⋂

i∈F
Ai 6= ∅ for all

finite subsets F ⊆ I then
⋂

i∈I
Ai 6= ∅.

• Every filter has a point of condensation.

• Every ultrafilter has a limit.

If is called compact if it is quasi-compact and Hausdorff.

Problem 5 (5 points). Show that the above conditions are indeed equiv-

alent, where the equivalence of the first two conditions should be taken

for granted.

Definition 5. A topology base of a topological space X is a set B

of open subsets of X such that every open subset of X is a union of

elements of B.

It is easy to see that a set B of subsets of a set X is a topology base
for some topology on X if and only if every finite intersection in X

(including the empty intersection which is X) is a union of elements of
B.

Problem 6 (2 points). For a topological space X, show the equivalence

of the following two conditions:
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• There is a topolgy base B closed under finite intersections in X

and such that the elements of B are quasicompact.

• The set of quasicompact open subsets of X is such a topology

base.

For a topological space X let Qc(X) be the set of quasi-compact
open subsets of X. Is is easy to see (and may used without further ado
in all solutions) that this is closed under finite unions.

Definition 6. A topological space is called spectral if it is sober and

satisfies the equivalent conditions of Problem 6.

Problem 7 (1 point). Let Y
f−−→ X be a map between topological

spaces, where X satfies the conditions of Problem 6. Also, let B be a

topology base on X as in Problem 6. Show that the following conditions

are equivalent:

• If Ω ∈ Qc(X) then f−1Ω ∈ Qc(Y ).
• If Ω ∈ B then f−1Ω ∈ Qc(Y ).

Obviously every map with these properties is continuous.

Definition 7. A spectral map is a map between spectral spaces satis-

fying the equivalent conditions of Problem 7.

Oviously spectral spaces form a category with spectral maps as mor-
phisms. Every spectral map is continuous but in general there are
continuous maps which are not spectral.

Problem 8 (3 points). Let X
f−−→ Y be continuous where X is qua-

sicompact and Y Hausdorff. Show that f closed in the sense that the

image of a closed subset of X is closed in Y .

Two of the 22 points from this sheet are bonus points which are not
counted in the calulation of the 50%-threshold for passing the exams.
Solutions should be e-mailed to my institute e-mail address (my sec-

ond name (franke) at math dot uni hyphen bonn dot de) before Monday
October 28.


