Boundary Control of Flows in Networks

Klaus-Jochen Engel University of L'Aquila, Italy

joint work with

M. Kramar Fijavž (Ljubljana)R. Nagel (Tübingen)E. Sikolya (Budapest)

Minisymposium, DMV-Jahrestagung 18. September 2006

Outline of the Talk

- Flows in Networks
- Some Notions from Graph Theory
- The Mathematical Model
- Abstract Formulation
- Boundary Control of Linear Systems
- Boundary Control of Flows in Networks
- Outlook

Flows in Networks

Example 1

Here we have

$$(\Phi_{w}^{-})^{\top} = \begin{pmatrix} \frac{2}{3} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \frac{1}{3} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \mathbb{A} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 \\ \frac{2}{3} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ \frac{1}{3} & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathcal{R}_{\text{max}}^{\text{BC}} = \left\{ (g_1, \dots, g_6)^{\top} \in \mathsf{L}^1([0, 1], \mathbb{C}^6) : 2g_5 = g_1 \right\}$$
$$= \mathcal{R}_i^{\text{BC}} \iff i = 2 \text{ or } 5$$

Some Notions from Graph Theory

Consider

- $V = \{v_1, \dots v_n\} =$ vertices
- $E = \{e_1, \dots e_m\} = edges$
- $e_j = [0,1] \forall j$:

Definition 2 (Graph Matrices)

(i) $\Phi^+ = (\varphi_{ij}^+)_{n \times m} = \text{incoming incidence matrix}$

$$\varphi_{ij}^{+} = \begin{cases} 1 & \text{if } -\frac{e_j}{v_i} \\ 0 & \text{else} \end{cases}$$

(ii) $\Phi^- = \left(\varphi_{ij}^-\right)_{n\times m} = \text{outgoing incidence matrix}$

$$\varphi_{ij}^{-} = \begin{cases} 1 & \textit{if } v_i \\ 0 & \textit{else} \end{cases}$$

(iii) $\Phi_w^- = (w_{ij}^-)_{n \times m}^- = \text{weighted outgoing incidence}$ $\text{matrix: } \underbrace{v_i \underbrace{e_j}_{w_{ij}^-}}$

(iv)
$$\mathbb{A} = (a_{ik})_{n \times n} = \Phi^+(\Phi_w^-)^\top = \text{weighted}$$
 adjacency matrix: $v_k \rightarrow v_i$

(v) $\mathbb{B} = (b_{kj})_{m \times m} = (\Phi_w^-)^\top \Phi^+ = \text{weighted}$ adjacency matrix of line graph: $\underbrace{\begin{array}{c} e_j \\ b_{kj} \end{array}}$

Remark 3
$$\Phi^-(\Phi_w^-)^\top = I_{\mathbb{C}^n}$$

The Mathematical Model (simplest case)

Transport Equation

(TE)
$$\frac{\partial}{\partial t}u_j(t,s) = \frac{\partial}{\partial s}u_j(t,s)$$

Boundary Condition (Kirchhoff law: out = in)

(BC)
$$\varphi_{ij}^{-}u_{j}(t,1) = w_{ij}^{-} \sum_{k=1}^{m} \varphi_{ik}^{+}u_{k}(t,0)$$

$$0 \xrightarrow{e_{j}} v_{i} \xrightarrow{e_{k}} (k = 1 \dots, m)$$

$$s = 0 \xrightarrow{\varphi_{ij}^{-}, w_{ij}^{-}} 1 0 \xrightarrow{\varphi_{ik}^{+}} 1$$

Initial Condition

(IC)
$$u_j(0,s) = f_j(s)$$

where

 $t \ge 0$ time variable

 $s \in [0, 1]$ space variable

 $j = 1, \dots, m$ (number of edges)

 $i = 1 \dots n$ (number of vertices)

Abstract formulation

(TE), (BC), (IC) ← Abstract Cauchy Problem

(ACP)
$$\begin{cases} \frac{d}{dt}u(t) = Au(t), \ t \ge 0\\ u(0) = f \end{cases}$$

on X, where

- $X = L^1([0,1], \mathbb{C}^m) = \text{state space}$
- $A = \operatorname{diag}(\frac{d}{ds})_{m \times m}$ with domain (use Rem.3)

$$D(A) = \left\{ g \in W^{1,1}([0,1], \mathbb{C}^m) : \frac{g(1) \in Rg(\Phi_w^-)^\top \&}{\Phi^- g(1) = \Phi^+ g(0)} \right\}$$
$$= \left\{ g \in W^{1,1}([0,1], \mathbb{C}^m) : g(1) = \mathbb{B} g(0) \right\}$$

• $u(t) = u(t, \cdot), f = (f_1, \dots, f_m)^{\top}$

Remark 4 $A \sim \text{Difference Equation}$

(ADE)
$$v(t) = \begin{cases} \mathbb{B} \, v(t-1), & t > 1 \\ f(t), & t \in [0,1] \end{cases}$$

Corollary 5 A generates the str.cont.semigroup

$$[T(t)g](s) = \mathbb{B}^n g(t+s-n)$$
 if $t+s \in [n,n+1)$
where $\mathbb{B}^0 := 0$. In particular, $[T(n)g](s) = \mathbb{B}^n g(s)$

Boundary Control of Linear Systems

Now consider the Boundary Control System

(ACP_{BC})
$$\begin{cases} \frac{d}{dt} u(t) = A_m u(t), & t \ge 0 \\ Q u(t) = C w(t) & t \ge 0 \\ u(0) = f \end{cases}$$

on X for

- Banach spaces X = state, $\partial X = boundary$ and $U = control\ space$
- ullet a closed, d.d. operator $A_m:D(A_m)\subseteq X\to X$
- ullet a boundary operator $Q \in \mathcal{L}(D(A_m), \partial X)$
- a control operator $C \in \mathcal{L}(U, \partial X)$
- a control $w \in L^1(\mathbb{R}_+, U)$ & I.C. $f \in X$

Remark 6 $(ACP) \iff (ACP_{BC})$ for

- $A_m = \operatorname{diag}(\frac{d}{ds})_{m \times m}$ with domain $D(A_m) = \left\{ g \in \mathsf{W}^{1,1}([0,1],\mathbb{C}^m) : g(1) \in \mathsf{Rg}(\Phi_w^-)^\top \right\}$
- $\partial X = \mathbb{C}^n$, $Qv = \Phi^-v(1) \Phi^+v(0)$, C = 0

Hypothesis 7

- $A := A_m|_{\ker Q}$ generates $(T(t))_{t\geq 0}$ on X
- $Q: D(A_m) \to \partial X$ is surjective

Lemma 8 (Greiner, '87)

(i)
$$Q_{\lambda} := (Q|_{\ker(\lambda - A_m)})^{-1} \in \mathcal{L}(\partial X, X)$$

(ii)
$$D(A_m) = D(A) \oplus \ker(\lambda - A_m)$$
 with projection $P_{\lambda} := Q_{\lambda}Q \in \mathcal{L}(D(A_m))$ onto $\ker(\lambda - A_m)$

Proposition 9 (Variation of Const. Formula)

• If $u(\cdot)$ solves (ACP_{BC}) then

$$u(t) = T(t)f + \left[(\lambda - A_{-1}) \int_0^t T(t - s) Q_{\lambda} C w(s) ds \right]$$

$$=: T(t)f + \left[(\lambda - A_{-1}) \mathcal{C}_t^{\lambda} w \right]$$

$$=: T(t)f + \mathcal{C}_t^{\mathsf{BC}} w$$

• If $f \in D(A_m)$, $w \in \mathsf{L}^1_{\mathsf{loc}}(\mathbb{R}_+, U)$ are suff.regular & Qf = Cw(0) (= compat.cond.) then

$$u(t) := T(t)f + \mathcal{C}_t^{\mathsf{BC}} w$$

is the classical solution of (ACP_{BC})

Proof.
$$u(t) = (I - P_{\lambda})u(t) + P_{\lambda}u(t) \in D(A) + \ker(\lambda - A_m) \Rightarrow \frac{d}{dt}u(t) = A_{-1}u(t) + (\lambda - A_{-1})Q_{\lambda}Cw(t)$$

Remarks 10 (i) $\mathcal{C}_t^{\lambda} = \text{controllability map } of$

$$(\mathsf{cACP}_{\lambda}) \begin{cases} \frac{d}{dt}v(t) = Av(t) + Q_{\lambda}Cw(t), \ t \ge 0 \\ v(0) = f \end{cases}$$

where $Q_{\lambda}C \in \mathcal{L}(U,X)$, i.e., $v(t) = T(t)f + \mathcal{C}_t^{\lambda} w$

- (ii) $C_t^{\lambda} w \in D(A)$ if
 - $D(A_m) \in Fav(A)$ or
 - $w \in \mathsf{W}^{1,1}_{\mathsf{loc}}(\mathbb{R}_+, U)$
- (iii) $\mathcal{C}_t^{\mathsf{BC}} = \mathsf{bound.control.map}$ is independ. of λ

Theorem 11 Let

$$\mathcal{R}^{\mathsf{BC}} := \overline{\bigcup_{t \geq 0} \mathsf{Rg}(\mathcal{C}_t^{\mathsf{BC}})} = \mathsf{app.reach.space} \text{ of } (\mathsf{ACP}_{\mathsf{BC}})$$

$$\mathcal{R}^{\lambda} := \overline{\bigcup_{t \geq 0} \operatorname{Rg}(\mathcal{C}^{\lambda}_{t})} = \operatorname{app.reach.space of } (\operatorname{cACP}_{\lambda})$$

Then

$$\mathfrak{R}^{\mathsf{BC}} = \mathfrak{R}^{\lambda} \quad \forall \ \lambda > \omega_0(A)$$

- = smallest closed T(t)-inv. subspace of X containing $\operatorname{Rg}(Q_{\lambda}C)$ for some/all $\lambda > \omega_0(A)$
- = smallest closed $R(\mu, A)$ -inv. subspace of X containing $Rg(Q_{\lambda}C)$ for some/all $\lambda > \omega_0(A)$

$$= \overline{\lim} \Big(\bigcup_{\lambda > w} \operatorname{Rg}(Q_{\lambda}C) \Big) \quad \forall \ w > \omega_0(A)$$

Remark 12
$$\operatorname{Rg}(Q_{\lambda}) = \ker(\lambda - A_m)$$
 hence

$$\mathfrak{R}^{\mathsf{BC}} \subseteq \overline{\mathsf{lin}} \Big(\bigcup_{\lambda > \omega_0(A)} \mathsf{ker}(\lambda - A_m) \Big) =: \mathfrak{R}^{\mathsf{BC}}_{\mathsf{max}}$$

Problem 13 When holds $\Re^{BC} = \Re^{BC}_{max}$?

Boundary Control of Flows in Networks

Problem 14 Let $\mathcal{R}_i^{\mathsf{BC}} := \mathsf{set}$ of states which can be approximately reached in any time by a control w acting only on v_i $(1 \le i \le n)$

When holds
$$\Re_i^{BC} = \Re_{\max}^{BC}$$
?

Here we have

•
$$U = \mathbb{C}$$
, $C = C_i : U \to \text{lin}\{v_i\} \subset \partial X = \mathbb{C}^n$

Moreover

•
$$\Re_{\max}^{\mathsf{BC}} = \left\{ (\Phi_w^-)^\top g : g \in X \right\} \neq X = \mathsf{L}^1([0,1],\mathbb{C}^m)$$

Theorem 15

$$\mathcal{R}_{i}^{\mathsf{BC}} = \mathcal{R}_{\mathsf{max}}^{\mathsf{BC}} \Longleftrightarrow \mathsf{lin}\left\{v_{i}, \mathbb{A}v_{i}, \dots, \mathbb{A}^{n-1}v_{i}\right\} = \mathbb{C}^{n}$$

(cACP_i)
$$\begin{cases} \frac{d}{dt}x(t) = \mathbb{A}x(t) + v_i \cdot w(t), & t \ge 0 \\ x(0) = f \end{cases}$$

is exactly controllable on \mathbb{C}^n

Proof. Use Cor.5 & Thm.11 □

Outlook

- Different and space dependent velocities
- Absorption, scattering and sources
- Infinite networks
- Diffusion instead of flow

• . . .