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Flows in Networks

Example 1

Here we have
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Revax = {(g1,---.96) " € L1([0,1],C%) : 2g5 = g1
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Some Notions from Graph Theory

Consider
o V ={vq,...vp} = vertices
o £ ={eq,...em} = edges
o
J

e ¢; =[0,1] V5 RS

Definition 2 (Graph Matrices)

(i) (gozj )nXm incoming incidence matrix
o
+_J1 if L)
Yii T o else
(ii) &~ = <9075j)n><m = outgoing incidence matrix
e
N B )
YT Yo else

(iii) ®y = (w;>) = weighted outgoing incidence
J nxm e
matrix: (V)
(iv) A= (a;)nxn = DT (b)) = weighted

adjacency matrix: (0>

Ak
(V) B = (b )mxm = (dg) dT = weighted

adjacency matrix of line graph: +@+

Remark 3 & (o) = Ien



The Mathematical Model (simplest case)

e [ransport Equation

0 0

(TE) 5 u;i(t,s) = 5 u;(t, s)

e Boundary Condition (Kirchhoff law: out=in)

m

(BO)  iuj(t,1) =wj > @it uy(t,0)
k=1
€, (&
(%)) (k=1...,m)

s=0 Pijp Y510 ¥ 1

e Initial Condition

(IC) u;(0,s) = f; (s)

where
t > 0 time variable
s € [0, 1] space variable
j=1,...,m (number of edges)

i=1...n (number of vertices)



Abstract formulation

(TE), (BC), (IC) <= Abstract Cauchy Problem

{jtu(t) — Au(t), t>0

(ACP) w(0) = f

on X, where
e X = L1(]0,1],C™) = state space

o A= diag(d%) . Wwith domain (use Rem.3)

m X

D(A) = {g & \/\/171([0’ 1]’Cm) : g(]-) S Rg(cbw)T&}

®g(1) = $Tg(0)
= {g e Wh1([0,1],C™) : g(1) = Bg(0)}

o u(t) =u(t,), f=C(f1, - fm)"

Remark 4 A ~ Difference Equation

o(2) = {IB%v(t— 1), t>1

(ADE) f(t), t € [0,1]

Corollary 5 A generates the str.cont.semigroup

[T(t)gl(s) =B"g(t+s—n) if t+se[nn+1)
where BO := 0. In particular, [T(n) g](s) = B"g(s)
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Boundary Control of Linear Systems
Now consider the Boundary Control System

(ou(t) = Amu(t), t>0
(ACPgCc) 11 Qu(t) = Cw(t) t>0
u(0) = f
on X for

e Banach spaces X = state, 0. X = boundary and
U = control space

e a closed, d.d. operator A, : D(A;) C X — X
e a boundary operator Q € L(D(An,),0X)

e a control operator C € L(U,0X)

e a control we LY(R,,U) & I.C. fe X

Remark 6 (ACP) <— (ACPgc) for
o A, = diag(d%)m><m with domain

D(Am) = {g € WH1([0,1],C™) : g(1) € Rg(Py,) T}
¢ X =C", Qu=> v(l) —dTv(0), C =0

Hypothesis 7
e A= Amlkerq generates (T(t));>0 on X
e Q: D(Am) — 0X is surjective

Lemma 8 (Greiner,’87)
(i) Qx = (Q|ker(A—Am))_1 € L(0X, X)
(ii) D(Am) = D(A) @ ker(\A — A;n) with projection
Py, :=Q,\Q € L(D(An)) onto ker(\ — Am)
6



Proposition 9 (Variation of Const. Formula)
o Ifu(-) solves (ACPgc) then

u(t) = T) f+](A=A_1)

=T f+|(A—A_1)
= T(t)f + CEw

o If f € D(Am), w € L} (Ry,U) are suff.regular

& Qf = Cw(0) (= compat.cond.) then
u(t) == T()f + CPCw
is the classical solution of (ACPgc)

Proof. u(t) = (I — Pyu(t) + Pu(t) € D(A) + ker(A — Ap) =
Lu) =A1u(t) + (A —A_1)QxCw(t) O

Remarks 10 (i) = controllability map of
d — >
v(0) = f

where Q,C € L(U, X), i.e., v(t) = T(t)f+C}w

(i) C}w € D(A) if
e D(An) € Fav(A) or

o wE Wllo’é(R_|_,U)

(iii) (?tBC — bound.control.map is independ. of \
7



Theorem 11 Let

RBC. — | ) Rg(CEC) = app.reach.space of (ACPgc)
>0

RA-— v Rg(C}) = app.reach.space of (CACP,)
>0

T hen

RBC =R} v A > wp(A)

— smallest closed T'(t)-inv. subspace of X
containing Rg(Q\C) for some/all A > wg(A)

= smallest closed R(u, A)-inv. subspace of X
containing Rg(Q\C) for some/all A > wg(A)

:ﬁ( U Rg(Q,@)) Vw > wo(A)

A>w

Remark 12 Rg(Q,) = ker(A — Am) hence

RECCiin( ) ker(A—Am)) =: RES,
A>wq(A)

Problem 13  When holds RBC = RB¢, 7



Boundary Control of Flows in Networks

Problem 14 Let RBC = set of states which can
be approximately reached in any time by a control
w acting only on v; (1 <i<mn)

When holds REBC = RES, 7

Here we have
o U =2C, C:CiIUﬁlin{Ui}CaXz@n
Moreover

o RES = {(®p)Tg: g€ X} # X =L1([0,1],C™)

Theorem 15

RBC = RBC — lin {vi,Avi, e ,An_lvz-} = C"
<~
d
Zx(t) = Ax(t = t), t >
(CACPZ) dtx( ) $( )+U’L ’UJ( )7 - O
z(0) = f

is exactly controllable on C™

Proof. Use Cor.5 & Thm.11 []



Outlook

e Different and space dependent velocities
e Absorption, scattering and sources

e Infinite networks

e Diffusion instead of flow
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